Skip to main content

Optimal Security Notion for Decentralized Multi-Client Functional Encryption

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2023)

Abstract

Research on (Decentralized) Multi-Client Functional Encryption (or (D)MCFE) is very active, with interesting constructions, especially for the class of inner products. However, the security notions have been evolving over the time. While the target of the adversary in distinguishing ciphertexts is clear, legitimate scenarios that do not consist of trivial attacks on the functionality are less obvious. In this paper, we wonder whether only trivial attacks are excluded from previous security games. And, unfortunately, this was not the case.

We then propose a stronger security notion, with a large definition of admissible attacks, and prove it is optimal: any extension of the set of admissible attacks is actually a trivial attack on the functionality, and not against the specific scheme. In addition, we show that all the previous constructions are insecure w.r.t. this new security notion. Eventually, we propose new DMCFE schemes for the class of inner products that provide the new features and achieve this stronger security notion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The work of [7] constructs function-hiding dynamic decentralized FE, which directly yields a DMCFE with a stronger property of function secrecy. Even though their proposed security model captures separated corruption of \(\textsf{ek}_i\) and \(\textsf{sk}_i\), implying they are different, their dynamic decentralized FE construction uses the same key for both and so does the resulting DMCFE, i.e. \(\textsf{sk}_i = \textsf{ek}_i\) for every i.

  2. 2.

    We use the metrics employed in the context of the \(\textsf{LWE}\)-based \(\textsf {(D)MCFE}\) in [24].

  3. 3.

    The admissibility for \(\textsf {MCFE}\) is the particular condition when \(\mathcal {H}_\textsf{skey}= [m]\) and thus \(\textbf{y}_\textsf{skey}=\textbf{y}\), meaning the only deducible function is F itself.

  4. 4.

    There are further involved technicalities to ensure that \(\textsf{ek}_i\) is constructed consistently, e.g. see the transition \(\textsf{G}_7\rightarrow \textsf{G}_8\) in the proof of Theorem 16.

  5. 5.

    In addition, we can allow dynamic corruption on one type but static corruption on the other type of keys, such as \(\mathsf {dmc\!\!\!\,\,\text {-}stat\text {-}sk\text {-}ind\!\!\!\,\,\text {-}cpa}\) to indicate partially static IND-security with adaptive challenges, dynamic corruption of \(\textsf{ekey}\), and static corruption of \(\textsf{skey}\).

  6. 6.

    Similarly, we can allow dynamic corruption on one type but static corruption on the other type of keys, such as \(\mathsf {dmc\!\!\!\,\,\text {-}stat\text {-}sk\text {-}ind\!\!\!\,\,\text {-}cpa}+\) to indicate partially static IND-security with adaptive challenges, dynamic corruption of \(\textsf{ekey}\), and static corruption of \(\textsf{skey}\).

References

  1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_28

    Chapter  Google Scholar 

  2. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_19

    Chapter  Google Scholar 

  3. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_5

    Chapter  Google Scholar 

  4. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_21

    Chapter  Google Scholar 

  5. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public trace and revoke from standard assumptions: Extended abstract. In: ACM CCS 2017 (2017)

    Google Scholar 

  6. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption from pairings. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 208–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_8

    Chapter  Google Scholar 

  7. Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 224–255. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_8

    Chapter  Google Scholar 

  8. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption: Stronger security, broader functionality. In: Kiltz, E., Vaikuntanathan, V. (eds.) Theory of Cryptography. TCC 2022. LNCS, vol. 13747. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1_25

  9. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  10. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility results, impossibility results and the quest for a general definition. In: CANS 13 (2013)

    Google Scholar 

  11. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  12. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: 48th FOCS (2007)

    Google Scholar 

  13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  14. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric pairings. In: PAIRING 2012 (2013)

    Google Scholar 

  15. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_24

    Chapter  Google Scholar 

  16. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with repetition for inner product. Cryptology ePrint Archive, Report 2018/1021 (2018). https://eprint.iacr.org/2018/1021

  17. Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic decentralized functional encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 747–775. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_25

    Chapter  Google Scholar 

  18. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: 8th IMA International Conference on Cryptography and Coding (2001)

    Google Scholar 

  19. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional encryption from the \(k\)-Linear assumption. In: PKC 2018, Part II (2018)

    Google Scholar 

  20. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  21. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32

    Chapter  Google Scholar 

  22. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional encryption. Cryptology ePrint Archive, Report 2013/774 (2013), https://eprint.iacr.org/2013/774

  23. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  24. Libert, B., Ţiţiu, R.: Multi-client functional encryption for linear functions in the standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 520–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_18

    Chapter  MATH  Google Scholar 

  25. Nguyen, K., Phan, D.H., Pointcheval, D.: Optimal security notion for decentralized multi-client functional encryption. In: 21st International Conference on Applied Cryptography and Network Security. Springer-Verlag (2023). https://eprint.iacr.org/2023/435

  26. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

    Chapter  Google Scholar 

  27. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_35

    Chapter  Google Scholar 

  28. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_22

    Chapter  Google Scholar 

  29. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  30. Shamir, A.: Identity-based cryptosystems and signature schemes. In: CRYPTO1984 (1984)

    Google Scholar 

  31. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute, the French ANR Project ANR-19-CE39-0011 PRESTO and the Beyond5G Project as part of the plan “France Relance”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ky Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, K., Phan, D.H., Pointcheval, D. (2023). Optimal Security Notion for Decentralized Multi-Client Functional Encryption. In: Tibouchi, M., Wang, X. (eds) Applied Cryptography and Network Security. ACNS 2023. Lecture Notes in Computer Science, vol 13906. Springer, Cham. https://doi.org/10.1007/978-3-031-33491-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33491-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33490-0

  • Online ISBN: 978-3-031-33491-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics