Skip to main content

Combining Semantic Web and Machine Learning for Auditable Legal Key Element Extraction

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13870))

Included in the following conference series:

Abstract

Based on a real world use case, we developed and evaluated a hybrid AI system that aims to extract key elements from legal permits by combining methods from the Semantic Web and Machine Learning. Specifically, we modelled the available background knowledge in a custom Knowledge Graph, which we exploited together with the usage of different language- and text-embedding-models in order to extract different information from official Austrian permits, including the Issuing Authority, the Operator of the facility in question, the Reference Number, and the Issuing Date. Additionally, we implemented mechanisms to capture automatically auditable traces of the system to ensure the transparency of the processes. Our quantitative evaluation showed overall promising results, while the in-depth qualitative analysis revealed concrete error types, providing guidance on how to improve the current prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.geonames.org/ontology/documentation.html.

  2. 2.

    The link to the online version will be made available upon acceptance.

  3. 3.

    https://www.poolparty.biz/agile-data-integration/.

  4. 4.

    http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#.

  5. 5.

    Please note, that version 2.1 has not yet officially been released yet, but is the latest develop branch of the ontology.

  6. 6.

    https://github.com/dateutil/dateutil.

  7. 7.

    https://github.com/scrapinghub/dateparser.

  8. 8.

    https://github.com/akoumjian/datefinder.

  9. 9.

    https://github.com/HeidelTime/heideltime.

  10. 10.

    https://www.poolparty.biz/poolparty-extractor.

  11. 11.

    https://wandb.ai/site.

  12. 12.

    https://mlflow.org.

References

  1. Breit, A., Revenko, A., Rezaee, K., Pilehvar, M.T., Camacho-Collados, J.: WiC-TSV: an evaluation benchmark for target sense verification of words in context. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1635–1645. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.eacl-main.140, https://aclanthology.org/2021.eacl-main.140

  2. Eckart de Castilho, R., Gurevych, I.: A broad-coverage collection of portable NLP components for building shareable analysis pipelines. In: Proceedings of the Workshop on Open Infrastructures and Analysis Frameworks for HLT, pp. 1–11. Association for Computational Linguistics and Dublin City University, Dublin (2014). https://doi.org/10.3115/v1/W14-5201, https://aclanthology.org/W14-5201

  3. Eiband, M., Schneider, H., Bilandzic, M., Fazekas-Con, J., Haug, M., Hussmann, H.: Bringing transparency design into practice. In: 23rd International Conference on Intelligent User Interfaces, pp. 211–223 (2018)

    Google Scholar 

  4. Ekaputra, F.J., et al.: Semantic-enabled architecture for auditable privacy-preserving data analysis. Semant. Web (Preprint), 1–34 (2021)

    Google Scholar 

  5. Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_7

    Chapter  Google Scholar 

  6. Janowicz, K., et al.: UnifiedViews: an ETL tool for rdf data management. Semant. Web 9(5), 661–676 (2018). https://doi.org/10.3233/SW-180291

  7. Leitner, E., Rehm, G., Moreno-Schneider, J.: Fine-grained named entity recognition in legal documents. In: Acosta, M., Cudré-Mauroux, P., Maleshkova, M., Pellegrini, T., Sack, H., Sure-Vetter, Y. (eds.) SEMANTiCS 2019. LNCS, vol. 11702, pp. 272–287. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33220-4_20

    Chapter  Google Scholar 

  8. Liao, Q.V., Gruen, D., Miller, S.: Questioning the AI: informing design practices for explainable AI user experiences. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2020)

    Google Scholar 

  9. Longley, D., Sporny, M., Kellogg, G., Lanthaler, M., Lindström, N.: JSON-LD 1.1 framing (2020). https://www.w3.org/TR/json-ld-framing/

  10. Miles, S., Groth, P., Munroe, S., Moreau, L.: PrIMe: a methodology for developing provenance-aware applications. ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(3), 1–42 (2011)

    Article  Google Scholar 

  11. Mitchell, M., et al.: Model cards for model reporting. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 220–229 (2019)

    Google Scholar 

  12. Moreno-Schneider, J., et al.: Orchestrating NLP services for the legal domain. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 2332–2340. European Language Resources Association, Marseille (2020). https://aclanthology.org/2020.lrec-1.284

  13. Naja, I., Markovic, M., Edwards, P., Cottrill, C.: A semantic framework to support AI system accountability and audit. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 160–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_10

    Chapter  Google Scholar 

  14. Ostendorff, M., Blume, T., Ostendorff, S.: Towards an open platform for legal information. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, JCDL 2020, pp. 385–388. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3383583.3398616

  15. Raji, I.D., et al.: Closing the AI accountability gap: Defining an end-to-end framework for internal algorithmic auditing. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 33–44 (2020)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by OBARIS (https://www.obaris.org/), a project funded by the Austrian Research Promotion Agency (FFG) under grant 877389.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajar J. Ekaputra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Breit, A., Waltersdorfer, L., Ekaputra, F.J., Karampatakis, S., Miksa, T., Käfer, G. (2023). Combining Semantic Web and Machine Learning for Auditable Legal Key Element Extraction. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics