Skip to main content

NASTyLinker: NIL-Aware Scalable Transformer-Based Entity Linker

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13870))

Included in the following conference series:

Abstract

Entity Linking (EL) is the task of detecting mentions of entities in text and disambiguating them to a reference knowledge base. Most prevalent EL approaches assume that the reference knowledge base is complete. In practice, however, it is necessary to deal with the case of linking to an entity that is not contained in the knowledge base (NIL entity). Recent works have shown that, instead of focusing only on affinities between mentions and entities, considering inter-mention affinities can be used to represent NIL entities by producing clusters of mentions. At the same time, inter-mention affinities can help to substantially improve linking performance for known entities. With NASTyLinker, we introduce an EL approach that is aware of NIL entities and produces corresponding mention clusters while maintaining high linking performance for known entities. The approach clusters mentions and entities based on dense representations from Transformers and resolves conflicts (if more than one entity is assigned to a cluster) by computing transitive mention-entity affinities. We show the effectiveness and scalability of NASTyLinker on NILK, a dataset that is explicitly constructed to evaluate EL with respect to NIL entities. Further, we apply the presented approach to an actual EL task, namely to knowledge graph population by linking entities in Wikipedia listings, and provide an analysis of the outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/nheist/CaLiGraph.

  2. 2.

    While there are entities in Wikidata which do not have a Wikipedia page, this case does not occur in NILK by construction.

  3. 3.

    We implement further clustering metrics (B-Cubed+, CEAF, MUC) but do not list them as they are similar to or adaptations of the classification metrics.

  4. 4.

    We apply simple preprocessing like lower-casing and removal of special characters.

  5. 5.

    We tried to compare with the full approach of Agarwal et al. but they do not provide any code and our efforts to re-implement it did not yield improved results.

  6. 6.

    The sampling of clusters was stratified w.r.t. cluster size.

  7. 7.

    We evaluated the linking and clustering decision w.r.t. the top-4 mention and entity candidates produced by the bi-encoder. Although recall@4 for the bi-encoder is 97%, some relevant candidates might have been missed.

  8. 8.

    For the evaluation to be significant, we treat all clusters referring to the same known entity as a single cluster.

References

  1. Agarwal, D., Angell, R., Monath, N., McCallum, A.: Entity linking and discovery via arborescence-based supervised clustering. arXiv preprint arXiv:2109.01242 (2021)

  2. Alfaro, C.A., Perez, S.L., Valencia, C.E., Vargas, M.C.: The assignment problem revisited. Optim. Lett. 16(5), 1531–1548 (2022). https://doi.org/10.1007/s11590-021-01791-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Angell, R., Monath, N., Mohan, S., Yadav, N., McCallum, A.: Clustering-based inference for biomedical entity linking. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2598–2608 (2021)

    Google Scholar 

  4. Ayoola, T., Tyagi, S., Fisher, J., Christodoulopoulos, C., Pierleoni, A.: ReFinED: an efficient zero-shot-capable approach to end-to-end entity linking. arXiv preprint arXiv:2207.04108 (2022)

  5. Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vector space model. In: COLING 1998 Volume 1: The 17th International Conference on Computational Linguistics (1998)

    Google Scholar 

  6. Blissett, K., Ji, H.: Cross-lingual NIL entity clustering for low-resource languages. In: Proceedings of the Second Workshop on Computational Models of Reference, Anaphora and Coreference, pp. 20–25 (2019)

    Google Scholar 

  7. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 708–716 (2007)

    Google Scholar 

  8. Dadzie, A., Preotiuc-Pietro, D., Radovanovic, D., Basave, A.E.C., Weller, K. (eds.): Proceedings of the 6th Workshop on ‘Making Sense of Microposts’ Co-Located with the 25th International World Wide Web Conference (WWW 2016), Montréal, Canada, 11 April 2016, CEUR Workshop Proceedings, vol. 1691. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1691

  9. Das, R., et al.: Multi-step entity-centric information retrieval for multi-hop question answering. In: Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pp. 113–118 (2019)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Dutta, S., Weikum, G.: C3EL: a joint model for cross-document co-reference resolution and entity linking. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 846–856 (2015)

    Google Scholar 

  12. Fahrni, A., Heinzerling, B., Göckel, T., Strube, M.: HITS’Monolingual and cross-lingual entity linking system at TAC 2013. In: TAC. Citeseer (2013)

    Google Scholar 

  13. Ganea, O.E., Hofmann, T.: Deep joint entity disambiguation with local neural attention. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2619–2629 (2017)

    Google Scholar 

  14. Gillick, D., et al.: Learning dense representations for entity retrieval. In: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pp. 528–537 (2019)

    Google Scholar 

  15. Greenfield, K., et al.: A reverse approach to named entity extraction and linking in microposts. In: # Microposts, pp. 67–69 (2016)

    Google Scholar 

  16. Heist, N., Hertling, S., Ringler, D., Paulheim, H.: Knowledge graphs on the web-an overview. In: Knowledge Graphs for eXplainable Artificial Intelligence, pp. 3–22 (2020)

    Google Scholar 

  17. Heist, N., Paulheim, H.: Uncovering the semantics of Wikipedia categories. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 219–236. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_13

    Chapter  Google Scholar 

  18. Heist, N., Paulheim, H.: Entity extraction from Wikipedia list pages. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 327–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_19

    Chapter  Google Scholar 

  19. Heist, N., Paulheim, H.: Information extraction from co-occurring similar entities. In: Proceedings of the Web Conference 2021, pp. 3999–4009 (2021)

    Google Scholar 

  20. Heist, N., Paulheim, H.: Transformer-based subject entity detection in Wikipedia listings. arXiv preprint arXiv:2210.01482 (2022)

  21. Iurshina, A., Pan, J., Boutalbi, R., Staab, S.: NILK: entity linking dataset targeting NIL-linking cases. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 4069–4073 (2022)

    Google Scholar 

  22. Ji, H., Grishman, R., Dang, H.T., Griffitt, K., Ellis, J.: Overview of the TAC 2010 knowledge base population track. In: Third Text Analysis Conference (TAC 2010), vol. 3, p. 3 (2010)

    Google Scholar 

  23. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)

    Article  Google Scholar 

  24. Kassner, N., Petroni, F., Plekhanov, M., Riedel, S., Cancedda, N.: EDIN: an end-to-end benchmark and pipeline for unknown entity discovery and indexing. arXiv preprint arXiv:2205.12570 (2022)

  25. Logan IV, R.L., McCallum, A., Singh, S., Bikel, D.: Benchmarking scalable methods for streaming cross document entity coreference. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4717–4731 (2021)

    Google Scholar 

  26. Logeswaran, L., Chang, M.W., Lee, K., Toutanova, K., Devlin, J., Lee, H.: Zero-shot entity linking by reading entity descriptions. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3449–3460 (2019)

    Google Scholar 

  27. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 824–836 (2018)

    Article  Google Scholar 

  28. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)

    Google Scholar 

  29. Monahan, S., Lehmann, J., Nyberg, T., Plymale, J., Jung, A.: Cross-lingual cross-document coreference with entity linking. In: TAC (2011)

    Google Scholar 

  30. Partalidou, E., Christou, D., Tsoumakas, G.: Improving zero-shot entity retrieval through effective dense representations. In: Proceedings of the 12th Hellenic Conference on Artificial Intelligence, pp. 1–5 (2022)

    Google Scholar 

  31. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  32. Radford, W., Hachey, B., Honnibal, M., Nothman, J., Curran, J.R.: Naıve but effective NIL clustering baselines-CMCRC at TAC 2011. In: Proceedings of Text Analysis Conference (TAC 2011). Citeseer (2011)

    Google Scholar 

  33. Rao, D., McNamee, P., Dredze, M.: Entity linking: finding extracted entities in a knowledge base. In: Poibeau, T., Saggion, H., Piskorski, J., Yangarber, R. (eds.) Multi-Source, Multilingual Information Extraction and Summarization. NLP, pp. 93–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-28569-1_5

    Chapter  Google Scholar 

  34. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992 (2019)

    Google Scholar 

  35. Ristoski, P., Lin, Z., Zhou, Q.: KG-ZESHEL: knowledge graph-enhanced zero-shot entity linking. In: Proceedings of the 11th on Knowledge Capture Conference, pp. 49–56 (2021)

    Google Scholar 

  36. Rizzo, G., Pereira, B., Varga, A., Van Erp, M., Cano Basave, A.E.: Lessons learnt from the Named Entity rEcognition and linking (NEEL) challenge series. Semant. Web 8(5), 667–700 (2017)

    Article  Google Scholar 

  37. Sevgili, Ö., Shelmanov, A., Arkhipov, M., Panchenko, A., Biemann, C.: Neural entity linking: a survey of models based on deep learning. Semant. Web 13(3), 527–570 (2022)

    Article  Google Scholar 

  38. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2014)

    Article  Google Scholar 

  39. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  40. Wang, Z., Ng, P., Nallapati, R., Xiang, B.: Retrieval, re-ranking and multi-task learning for knowledge-base question answering. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 347–357 (2021)

    Google Scholar 

  41. Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6397–6407 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Heist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heist, N., Paulheim, H. (2023). NASTyLinker: NIL-Aware Scalable Transformer-Based Entity Linker. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics