Skip to main content

Generative-Contrastive-Attentive Spatial-Temporal Network for Traffic Data Imputation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13938))

Included in the following conference series:

  • 951 Accesses

Abstract

Data missing is inevitable in Intelligent Transportation Systems (ITSs). Although many methods have been proposed for traffic data imputation, it is still very challenging because of two reasons. First, the ground truth of missing data is actually inaccessible, which makes most imputation methods hard to be trained. Second, incomplete data would easily mislead the model to learn unreliable spatial-temporal dependencies, which finally hurts the imputation performance. In this paper, we proposes a novel \(\underline{{\boldsymbol{G}}}\)enerative-\(\underline{{\boldsymbol{C}}}\)ontrastive-\(\underline{{\boldsymbol{A}}}\)ttentive \(\underline{{\boldsymbol{S}}}\)patial-\(\underline{{\boldsymbol{T}}}\)emporal \(\underline{{\boldsymbol{N}}}\)etwork (GCASTN) for traffic data imputation. It combines the ideas of generative and contrastive self-supervised learning together to develop a new training paradigm for imputation without relying on the ground truth of missing data. In addition, it introduces nearest missing interval to describe missing data and a novel \(\underline{{\boldsymbol{M}}}\)issing-\(\underline{{\boldsymbol{A}}}\)ware \(\underline{{\boldsymbol{A}}}\)ttention (MAA) mechanism is designed to utilize nearest missing interval to guide the model to adaptively learn the reliable spatial-temporal dependencies of incomplete traffic data. Extensive experiments covering three types of missing scenarios on two real-world traffic flow datasets demonstrate that GCASTN outperforms the state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pytorch.org.

References

  1. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recurrent network for traffic forecasting. arXiv preprint arXiv:2007.02842 (2020)

  2. Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: Brits: bidirectional recurrent imputation for time series. arXiv preprint arXiv:1805.10572 (2018)

  3. Chen, C., Petty, K., Skabardonis, A., Varaiya, P., Jia, Z.: Freeway performance measurement system: mining loop detector data. Transp. Res. Rec. 1748(1), 96–102 (2001)

    Article  Google Scholar 

  4. Chen, X., Lei, M., Saunier, N., Sun, L.: Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation. arXiv preprint arXiv:2104.14936 (2021)

  5. Cini, A., Marisca, I., Alippi, C.: Filling the g_ap_s: multivariate time series imputation by graph neural networks. arXiv preprint arXiv:2108.00298 (2021)

  6. García-Laencina, P.J., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: Pattern classification with missing data: a review. Neural Comput. Appl. 19(2), 263–282 (2010)

    Article  Google Scholar 

  7. Guo, S., Lin, Y., Wan, H., Li, X., Cong, G.: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34(11), 5415–5428 (2021)

    Article  Google Scholar 

  8. Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., Falkowski, M.J.: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from lidar data. Remote Sens. Environ. 112(5), 2232–2245 (2008)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  11. Luo, Y., Zhang, Y., Cai, X., Yuan, X.: E2GAN: end-to-end generative adversarial network for multivariate time series imputation, pp. 3094–3100. AAAI Press (2019)

    Google Scholar 

  12. Mattei, P.A., Frellsen, J.: Miwae: deep generative modelling and imputation of incomplete data sets. In: International Conference on Machine Learning, pp. 4413–4423. PMLR (2019)

    Google Scholar 

  13. Shukla, S.N., Marlin, B.M.: Multi-time attention networks for irregularly sampled time series. arXiv preprint arXiv:2101.10318 (2021)

  14. Stekhoven, D.J., Bühlmann, P.: Missforest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2012)

    Article  Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  16. White, I.R., Royston, P., Wood, A.M.: Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 30(4), 377–399 (2011)

    Article  MathSciNet  Google Scholar 

  17. Wu, Y., Zhuang, D., Labbe, A., Sun, L.: Inductive graph neural networks for spatiotemporal kriging. arXiv preprint arXiv:2006.07527 (2020)

  18. Yang, B., Kang, Y., Yuan, Y., Huang, X., Li, H.: ST-LBAGAN: spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation. Knowl.-Based Syst. 215, 106705 (2021)

    Article  Google Scholar 

  19. Yoon, J., Jordon, J., Schaar, M.: Gain: missing data imputation using generative adversarial nets. In: International Conference on Machine Learning, pp. 5689–5698. PMLR (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 62202043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengnan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, W., Lin, Y., Guo, S., Tang, W., Liu, L., Wan, H. (2023). Generative-Contrastive-Attentive Spatial-Temporal Network for Traffic Data Imputation. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13938. Springer, Cham. https://doi.org/10.1007/978-3-031-33383-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33383-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33382-8

  • Online ISBN: 978-3-031-33383-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics