Skip to main content

Fairness for Robust Learning to Rank

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Abstract

While conventional ranking systems focus solely on maximizing the utility of the ranked items to users, fairness-aware ranking systems additionally try to balance the exposure based on different protected attributes such as gender or race. To achieve this type of group fairness for ranking, we derive a new ranking system from the first principles of distributional robustness. We formulate a minimax game between a player choosing a distribution over rankings to maximize utility while satisfying fairness constraints against an adversary seeking to minimize utility while matching statistics of the training data. Rather than maximizing utility and fairness for the specific training data, this approach efficiently produces robust utility and fairness for a much broader family of distributions of rankings that include the training data. We show that our approach provides better utility for highly fair rankings than existing baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the implementation from https://github.com/ashudeep/Fair-PGRank for all baselines.

References

  1. Beutel, A., et al.: Fairness in recommendation ranking through pairwise comparisons. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining(KDD), pp. 2212–2220 (2019)

    Google Scholar 

  2. Biega, A.J., Gummadi, K.P., Weikum, G.: Equity of attention: Amortizing individual fairness in rankings. In: The 41st International ACM Sigir Conference on Research and Development in Information Retrieval, pp. 405–414 (2018)

    Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc (2011)

    Google Scholar 

  4. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  Google Scholar 

  5. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning, pp. 129–136 (2007)

    Google Scholar 

  6. Celis, L.E., Mehrotra, A., Vishnoi, N.K.: Interventions for ranking in the presence of implicit bias. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 369–380 (2020)

    Google Scholar 

  7. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3) (2016)

    Google Scholar 

  8. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  9. Diaz, F., Mitra, B., Ekstrand, M.D., Biega, A.J., Carterette, B.: Evaluating stochastic rankings with expected exposure. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 275–284 (2020)

    Google Scholar 

  10. Eckhouse, L.: Big data may be reinforcing racial bias in the criminal justice system. The Washington Post (2017)

    Google Scholar 

  11. Fathony, R., Liu, A., Asif, K., Ziebart, B.: Adversarial multiclass classification: A risk minimization perspective. In: NeurIPS (2016)

    Google Scholar 

  12. Ghosh, A., Dutt, R., Wilson, C.: When fair ranking meets uncertain inference. arXiv preprint arXiv:2105.02091 (2021)

  13. Grünwald, P.D., Dawid, A.P.: Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Ann. Stat. 32, 1367–1433 (2004)

    Google Scholar 

  14. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inform. Syst. (TOIS) 20(4), 422–446 (2002)

    Article  Google Scholar 

  15. Kallus, N., Zhou, A.: The fairness of risk scores beyond classification: Bipartite ranking and the xauc metric. In: Advances in Neural Information Processing Systems, pp. 3438–3448 (2019)

    Google Scholar 

  16. Kleinberg, J., Raghavan, M.: Selection problems in the presence of implicit bias. In: 9th Innovations in Theoretical Computer Science Conference (ITCS 2018) (2018)

    Google Scholar 

  17. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Quart. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  18. Larson, J., Mattu, S., Kirchner, L., Angwin, J.: How we analyzed the compas recidivism algorithm. ProPublica 9 (2016)

    Google Scholar 

  19. Mehrotra, A., Celis, L.E.: Mitigating bias in set selection with noisy protected attributes. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 237–248 (2021)

    Google Scholar 

  20. Narasimhan, H., Cotter, A., Gupta, M., Wang, S.: Pairwise fairness for ranking and regression. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 5248–5255 (2020)

    Google Scholar 

  21. O’Neil, C.: Weapons of math destruction: How big data increases inequality and threatens democracy. Broadway Books (2016)

    Google Scholar 

  22. Prost, F., et al.: Measuring model fairness under noisy covariates: A theoretical perspective. arXiv preprint arXiv:2105.09985 (2021)

  23. Qin, T., Liu, T.Y.: Introducing letor 4.0 datasets. arXiv preprint arXiv:1306.2597 (2013)

  24. Rezaei, A., Fathony, R., Memarrast, O., Ziebart, B.: Fairness for robust log loss classification. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 5511–5518 (2020)

    Google Scholar 

  25. Rezaei, A., Liu, A., Memarrast, O., Ziebart, B.D.: Robust fairness under covariate shift. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 9419–9427 (2021)

    Google Scholar 

  26. Robertson, S.E.: The probability ranking principle in ir. J. Document. 33(4), 294–304 (1977)

    Google Scholar 

  27. Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2219–2228. ACM (2018)

    Google Scholar 

  28. Singh, A., Joachims, T.: Policy learning for fairness in ranking. Adv. Neural. Inf. Process. Syst. 32, 5426–5436 (2019)

    Google Scholar 

  29. Singh, A., Kempe, D., Joachims, T.: Fairness in ranking under uncertainty. In: Advances in Neural Information Processing Systems, p. 34 (2021)

    Google Scholar 

  30. Yadav, H., Du, Z., Joachims, T.: Policy-gradient training of fair and unbiased ranking functions. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1044–1053 (2021)

    Google Scholar 

  31. Zehlike, M., Castillo, C.: Reducing disparate exposure in ranking: A learning to rank approach. In: Proceedings of The Web Conference 2020, pp. 2849–2855 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Program on Fairness in AI in collaboration with Amazon under award No. 1939743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Memarrast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Memarrast, O., Rezaei, A., Fathony, R., Ziebart, B. (2023). Fairness for Robust Learning to Rank. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics