Skip to main content

Adaptive Bi-nonlinear Neural Networks Based on Complex Numbers with Weights Constrained Along the Unit Circle

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13935))

Included in the following conference series:

  • 1065 Accesses

Abstract

Traditional real-valued neural networks can suppress neural inputs by setting the weights to zero or overshadow other inputs by using extreme weight values. Large network weights are undesirable because they may cause network instability and lead to exploding gradients. To penalize such large weights, adequate regularization is typically required. This work presents a feed-forward and convolutional layer architecture that constrains weights along the unit circle such that neural connections can never be eliminated or suppressed by weights, ensuring that no incoming information is lost by dying neurons. The neural network’s decision boundaries are redefined by expressing model weights as angles of phase rotations and layer inputs as amplitude modulations, with trainable weights always remaining within a fixed range. The approach can be quickly and readily integrated into existing layers while preserving the model architecture of the original network. The classification performance was tested and assessed on basic computer vision data sets using ShuffleNetv2, ResNet18, and GoogLeNet at high learning rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlfors, L.V.: Complex analysis: an introduction to the theory of analytic functions of one complex variable. New York, London 177 (1953)

    Google Scholar 

  2. Aizenberg, I.: Complex-Valued Neural Networks with Multi-valued Neurons, vol. 353. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20353-4

  3. Aizenberg, I.: The multi-valued neuron. In: Aizenberg, I. (ed.) Complex-Valued Neural Networks with Multi-valued Neurons. SCI, vol. 353, pp. 55–94. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20353-4_2

  4. Aizenberg, I., Moraga, C.: Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm. Soft. Comput. 11(2), 169–183 (2007)

    Article  Google Scholar 

  5. Aizenberg, I., Moraga, C., Paliy, D.: A feedforward neural network based on multi-valued neurons. In: Reusch, B. (eds.) Computational Intelligence, Theory and Applications. ASC, vol. 33, pp. 599–612. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31182-3_55

  6. Aizenberg, I., Paliy, D., Astola, J.T.: Multilayer neural network based on multi-valued neurons and the blur identification problem. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 473–480. IEEE (2006)

    Google Scholar 

  7. Aizenberg, I., Sheremetov, L., Villa-Vargas, L., Martinez-Muñoz, J.: Multilayer neural network with multi-valued neurons in time series forecasting of oil production. Neurocomputing 175, 980–989 (2016)

    Article  Google Scholar 

  8. Aizenberg, N.N., Aizenberg, I.N.: Cnn based on multi-valued neuron as a model of associative memory for grey scale images. In: CNNA’92 Proceedings Second International Workshop on Cellular Neural Networks and Their Applications, pp. 36–41. IEEE (1992)

    Google Scholar 

  9. Amin, M.F., Amin, M.I., Al-Nuaimi, A.Y.H., Murase, K.: Wirtinger calculus based gradient descent and Levenberg-Marquardt learning algorithms in complex-valued neural networks. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 550–559. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24955-6_66

    Chapter  Google Scholar 

  10. Amin, M.F., Murase, K.: Single-layered complex-valued neural network for real-valued classification problems. Neurocomputing 72(4–6), 945–955 (2009)

    Article  Google Scholar 

  11. Bassey, J., Qian, L., Li, X.: A survey of complex-valued neural networks. arXiv preprint arXiv:2101.12249 (2021)

  12. Benvenuto, N., Piazza, F.: On the complex backpropagation algorithm. IEEE Trans. Sig. Process. 40(4), 967–969 (1992)

    Article  Google Scholar 

  13. Clarke, T.L.: Generalization of neural networks to the complex plane. In: 1990 IJCNN International Joint Conference on Neural Networks, pp. 435–440. IEEE (1990)

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    Google Scholar 

  15. Hirose, A.: Dynamics of fully complex-valued neural networks. Electron. Lett. 28(16), 1492–1494 (1992)

    Article  Google Scholar 

  16. Hirose, A.: Complex-Valued Neural Networks: Theories and Applications, vol. 5. World Scientific, Singapore (2003)

    Google Scholar 

  17. Hirose, A.: Complex-Valued Neural Networks, vol. 400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27632-3

  18. Hirose, A.: Complex-Valued Neural Networks: Advances and Applications, vol. 18. Wiley, Hoboken (2013)

    Google Scholar 

  19. Kuroe, Y., Yoshid, M., Mori, T.: On activation functions for complex-valued neural networks—existence of energy functions—. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP -2003. LNCS, vol. 2714, pp. 985–992. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44989-2_117

    Chapter  Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  21. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Trans. Sig. Process. 39(9), 2101–2104 (1991)

    Article  Google Scholar 

  22. Little, G.R., Gustafson, S.C., Senn, R.A.: Generalization of the backpropagation neural network learning algorithm to permit complex weights. Appl. Opt. 29(11), 1591–1592 (1990)

    Google Scholar 

  23. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Google Scholar 

  24. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  25. Lupea, V.M.: Multi-valued neuron with a periodic activation function-new learning strategy. In 2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing, pp. 79–82. IEEE (2012)

    Google Scholar 

  26. Nitta, T.: Orthogonality of decision boundaries in complex-valued neural networks. Neural Comput. 16(1), 73–97 (2004)

    Article  Google Scholar 

  27. Philipp, G., Song, D., Carbonell, J.G.: The exploding gradient problem demystified-definition, prevalence, impact, origin, tradeoffs, and solutions. arXiv preprint arXiv:1712.05577 (2017)

  28. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1975)

    Google Scholar 

  29. Rosenblatt, F.: The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory (1957)

    Google Scholar 

  30. Trabelsi, C., et al.: Deep complex networks. arXiv preprint arXiv:1705.09792 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felip Guimerà Cuevas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guimerà Cuevas, F., Phan, T., Schmid, H. (2023). Adaptive Bi-nonlinear Neural Networks Based on Complex Numbers with Weights Constrained Along the Unit Circle. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics