Skip to main content

Maternal PUFA Supplementation and Epigenetic Influences on Fat Tissue

  • Chapter
  • First Online:
Breastfeeding and Metabolic Programming

Abstract

Brown adipose tissue (BAT) has the unique ability amongst fat cells of generating heat without causing muscular movement (i.e. shivering). It achieves this by converting surplus chemical energy into heat via UCP1 (uncoupling protein 1), located within mitochondria. At present, research is focusing on BAT due to its essential role in regulating energy balance through the consumption of calories to generate body heat. Although the majority of children, adolescents and healthy adults have extensive deposits of BAT [1–4], adults suffering from obesity do not possess this tissue, which implies a role in how individuals become obese. Children who are obese and are susceptible to metabolic disorders are at risk of continuing to be obese in adulthood and of developing type 2 diabetes mellitus. Accordingly, ways to prevent children becoming obese and a knowledge of the factors governing the development of an excessive body mass index are vital for interventions to halt the vast numbers of adults who are now obese. How BAT grows in utero and shortly after birth is crucial to the longer term persistence of BAT in children and adults [5, 6]. Up to now, however, researchers have not addressed in detail how the mother’s diet may affect the maturation of foetal BAT. Although it is clear that the presence or absence of BAT has a major impact on the development of obesity, the relationship between the quantity of BAT present neonatally, the speed with which BAT is lost and the risk of becoming obese at a later stage has not yet been elucidated. It is known, however, that BAT is lost either through degeneration or a switch in phenotype to white adipose. Specifically, the potential for reducing obesity in her children by manipulating the mother’s diet in pregnancy remains unknown [6–9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan R, Toney AM, Jang Y, Ro SH, Chung S. Maternal n-3 PUFA supplementation promotes fetal brown adipose tissue development through epigenetic modifications in C57BL/6 mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(12):1488–97. https://doi.org/10.1016/j.bbalip.2018.09.008. Epub 2018 Sep 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhong Y, Catheline D, Houeijeh A, Sharma D, Du L, Besengez C, Deruelle P, Legrand P, Storme L. Maternal omega-3 PUFA supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring. Am J Physiol Lung Cell Mol Physiol. 2018;315(1):L116–32. https://doi.org/10.1152/ajplung.00527.2017. Epub 2018 Mar 29.

    Article  CAS  PubMed  Google Scholar 

  3. De Giuseppe R, Roggi C, Cena H. N-3 LC-PUFA supplementation: effects on infant and maternal outcomes. Eur J Nutr. 2014;53(5):1147–54. https://doi.org/10.1007/s00394-014-0660-9. Epub 2014 Jan 22.

    Article  CAS  PubMed  Google Scholar 

  4. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252–63.

    Article  CAS  PubMed  Google Scholar 

  5. Gilsanz V, Hu HH, Kajimura S. Relevance of brown adipose tissue in infancy and adolescence. Pediatr Res. 2013;73:3–9.

    Article  PubMed  Google Scholar 

  6. Cypess AM, Kahn CR. The role and importance of brown adipose tissue in energy homeostasis. Curr Opin Pediatr. 2010;22:478–84.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chechi K, Nedergaard J, Richard D. Brown adipose tissue as an anti-obesity tissue in humans. Obesity Rev. 2014;15:92–106.

    Article  CAS  Google Scholar 

  9. Symonds ME, Pope M, Budge H. Adipose tissue development during early life: novel insights into energy balance from small and large mammals. Proc Nutr Soc. 2012;71:363–70.

    Article  CAS  PubMed  Google Scholar 

  10. Symonds ME, Pope M, Sharkey D, Budge H. Adipose tissue and fetal programming. Diabetologia. 2012;55:1597–606.

    Article  CAS  PubMed  Google Scholar 

  11. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009;23:3113–20.

    Article  CAS  PubMed  Google Scholar 

  12. Porter C, Herndon DN, Chondronikola M, Chao T, Annamalai P, Bhattarai N, Saraf MK, Capek KD, Reidy PT, Daquinag AC, Kolonin MG, Rasmussen BB, Borsheim E, Toliver- Kinsky T, Sidossis LS. Human and mouse Brown adipose tissue mitochondria have comparable UCP1 function. Cell Metab. 2016;24:246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, Tal I, Dieckmann W, Gupta G, Kolodny GM, Pacak K, Herscovitch P, Cypess AM, Chen KY. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A. 2017;114:8649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang F, Hao G, Shao M, Nham K, An Y, Wang Q, Zhu Y, Kusminski CM, Hassan G, Gupta RK, Zhai Q, Sun X, Scherer PE, Oz OK. An adipose tissue atlas: an image-guided identification of human-like BAT and beige depots in rodents. Cell Metab. 2018;27:252–262.e253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Symonds ME, Pope M, Budge H. The ontogeny of brown adipose tissue. Annu Rev Nutr. 2015;35:295–320.

    Article  CAS  PubMed  Google Scholar 

  16. Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet. 2009;43:559–99.

    Article  CAS  PubMed  Google Scholar 

  17. Fedorova E, Zink D. Nuclear architecture and gene regulation. Biochim Biophys Acta. 2008;1783:2174–84.

    Article  CAS  PubMed  Google Scholar 

  18. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Pan R, Pfeifer A. Regulation of brown and beige fat by microRNAs. Pharmacol Ther. 2017;170:1–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lecoutre S, Petrus P, Rydén M, Breton C. Transgenerational epigenetic mechanisms in adipose tissue development, trends in endocrinology & metabolism, (2018). Emerging evidence and mechanisms. Biochim Biophys Acta. 2018;29:675.

    CAS  Google Scholar 

  21. Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S. Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. J Biol Chem. 2016;291:20551–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sambeat A, Gulyaeva O, Dempersmier J, Sul HS. Epigenetic regulation of the thermogenic adipose program. Trends Endocrinol Metab. 2017;28:19–31.

    Article  CAS  PubMed  Google Scholar 

  23. Okla M, Kim J, Koehler K, Chung S. Dietary factors promoting Brown and Beige fat development and thermogenesis, vol. 8. Adv Nutr (Bethesda, MD); 2017. p. 473–83.

    Google Scholar 

  24. Bargut TC, Silva-e-Silva AC, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Mice fed fish oil diet and upregulation of brown adipose tissue thermogenic markers. Eur J Nutr. 2016;55:159–69.

    Article  CAS  PubMed  Google Scholar 

  25. Pahlavani M, Razafimanjato F, Ramalingam L, Kalupahana NS, Moussa H, Scoggin S, Moustaid-Moussa N. Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J Nutr Biochem. 2017;39:101–9.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao M, Chen X. Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes. Biochem Biophys Res Commun. 2014;450:1446–51.

    Article  CAS  PubMed  Google Scholar 

  27. Fan R, Koehler K, Chung S. Adaptive thermogenesis by dietary n-3 polyunsaturated fatty acids: emerging evidence and mechanisms. Biochim Biophys Acta. 2018;

    Google Scholar 

  28. Trajkovski M, Lodish H. MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol Metab. 2013;24:442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arner P, Kulyte A. MicroRNA regulatory networks in human adipose tissue and obesity, nature reviews. Endocrinology. 2015;11:276–88.

    CAS  PubMed  Google Scholar 

  30. Karbiener M, Scheideler M. MicroRNA functions in Brite/Brown fat—novel perspectives towards anti-obesity strategies. Comput Struct Biotechnol J. 2014;11:101–5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mori MA, Thomou T, Boucher J, Lee KY, Lallukka S, Kim JK, Torriani M, Yki-Järvinen H, Grinspoon SK, Cypess AM. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J Clin Invest. 2014;124:3339–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM, Liu Q, Kahn CR, Lodish HF. Mir193b–365 is essential for brown fat differentiation. Nat Cell Biol. 2011;13:958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin Q, Wang C, Kuang X, Feng X, Sartorelli V, Ying H, Ge K, Dent SY. Gcn5 and PCAF regulate PPARγ and Prdm16 expression to facilitate brown adipogenesis. Mol Cell Biol. 2014; MCB. 00622–00614.

    Google Scholar 

  34. Emmett MJ, Lim H-W, Jager J, Richter HJ, Adlanmerini M, Peed LC, Briggs ER, Steger DJ, Ma T, Sims CA. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature. 2017;546:544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature. 2009;458:757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3:1–7.

    Google Scholar 

  37. Inagaki T, Tachibana M, Magoori K, Kudo H, Tanaka T, Okamura M, Naito M, Kodama T, Shinkai Y, Sakai J. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells. 2009;14:991–1001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şahin, Ö.N., Özpınar, A. (2023). Maternal PUFA Supplementation and Epigenetic Influences on Fat Tissue. In: Şahin, Ö.N., Briana, D.D., Di Renzo, G.C. (eds) Breastfeeding and Metabolic Programming. Springer, Cham. https://doi.org/10.1007/978-3-031-33278-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33278-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33277-7

  • Online ISBN: 978-3-031-33278-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics