Skip to main content

The Infant–Mother Molecular Conversation Involving Breast Milk mRNA

  • Chapter
  • First Online:
Breastfeeding and Metabolic Programming

Abstract

In mammalian species, there is an ongoing biological dialogue between the mother and offspring from the moment the blastocyst first implants up to the end of breastfeeding. In utero, signals pass via the placenta, whilst postpartum signalling occurs via milk to the gut. MicroRNAs (miRNAs) are brief unpaired sequences of RNA, around 22 nucleotides in total, which feature in many aspects of normal physiology and development. This chapter looks at the part played by miRNAs in the complex molecular dialogue shaping the development of the child, from the moment of implantation up to birth and beyond. The fact that miRNAs can be identified in so many body fluids, including amniotic fluid, the blood of the cord and in human milk means that a new way to understand normal and abnormal physiological processes in development has appeared, and raises the hope that one day new, non-invasive biomarkers will be found [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Floris I, Kraft JD, Altosaar I. Roles of MicroRNA across prenatal and postnatal periods. Int J Mol Sci. 2016;17(12):1994. https://doi.org/10.3390/ijms17121994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Power ML, Schulkin J. Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. Appl Transl Genom. 2013;2:55–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fazeli A, Holt WV. Cross talk during the periconception period. Theriogenology. 2016;86:438–42.

    Article  PubMed  Google Scholar 

  4. Petraglia F, Pasquale F, Wylie WV. Placental expression of neurohormones and other neuroactive molecules in human pregnancy. In: Power ML, Schulkin J, editors. Birth, distress and disease. Cambridge: Cambridge University Press; 2005. p. 16–73.

    Chapter  Google Scholar 

  5. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forbes K. IFPA Gabor than award lecture: molecular control of placental growth: the emerging role of microRNAs. Placenta. 2013;34:S27–33.

    Article  CAS  PubMed  Google Scholar 

  7. Thornburg KL, Marshall N. The placenta is the center of the chronic disease universe. Am J Obstet Gynecol. 2015;213:S14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Janssen AB, Kertes DA, McNamara GI, Braithwaite EC, Creeth HDJ, Glover VI, John RM. A role for the placenta in programming maternal mood and childhood behavioural disorders. J Neuroendocrinol. 2016;28:1–6.

    Article  Google Scholar 

  9. Tung J, Archie EA, Altmann J, Alberts SC. Cumulative early life adversity predicts longevity in wild baboons. Nat Commun. 2016;7:11,181.

    Article  CAS  Google Scholar 

  10. Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25:341–8.

    Article  PubMed  Google Scholar 

  11. Siggers J, Ostergaard MV, Siggers RH, Skovgaard K, Mølbak L, Thymann T, Schmidt M, Møller HK, Purup S, Fink LN, et al. Postnatal amniotic fluid intake reduces gut inflammatory responses and necrotizing enterocolitis in preterm neonates. Am J Physiol Gastrointest Liver Physiol. 2013;304:G864–75.

    Article  CAS  PubMed  Google Scholar 

  12. Altosaar I, Siggers J. Micromolecules to nanoparticles-human milk: more than nutrition. In: German B, Rhine W, editors. Proceedings of the 3rd annual international conference on human milk science and innovation. Prolacta Bioscience, City of Industry, CA: Pasadena, CA; 2015, pp. 6–8.

    Google Scholar 

  13. Bartol FF, Wiley AA, Bagnell CA. Epigenetic programming of porcine endometrial function and the lactocrine hypothesis. Reprod Domest Anim. 2008;43:273–9.

    Article  PubMed  Google Scholar 

  14. Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system? BioEssays News Rev Mol Cell Dev Biol. 2006;28:606–16.

    Article  CAS  Google Scholar 

  15. Sale S, Pavelic K. Mammary lineage tracing: the coming of age. Cell Mol Life Sci. 2015;72:1577–83.

    Article  CAS  PubMed  Google Scholar 

  16. Beck KL, Weber D, Phinney BS, Smilowitz JT, Hinde K, Lönnerdal B, Korf I, Lemay DG. Comparative proteomics of human and macaque milk reveals species-specific nutrition during postnatal development. J Proteome Res. 2015;14:2143–57.

    Article  CAS  PubMed  Google Scholar 

  17. Hinde K, Milligan LA. Primate milk: proximate mechanisms and ultimate perspectives. Evol Anthropol. 2011;20:9–23.

    Article  PubMed  Google Scholar 

  18. Hinde K, German JB. Food in an evolutionary context: insights from mother’s milk. J Sci Food Agric. 2012;92:2219–23.

    Article  CAS  PubMed  Google Scholar 

  19. Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol. 2013;48:51–68.

    Article  CAS  PubMed  Google Scholar 

  20. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.

    Article  CAS  PubMed  Google Scholar 

  22. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  23. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in drosophila. Genome Biol. 2003;5:R1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sookoian S, Gianotti TF, Burgueño AL, Pirola CJ. Fetal metabolic programming and epigenetic modifications: a systems biology approach. Pediatr Res. 2013;73:531–42.

    Article  CAS  PubMed  Google Scholar 

  25. Floris I, Descamps B, Vardeu A, Mitic T, Posadino AM, Shantikumar S, Sala-Newby G, Capobianco G, Mangialardi G, Howard L, et al. Gestational diabetes mellitus impairs fetal endothelial cell functions through a mechanism involving microRNA-101 and histone methyltransferase enhancer of zester homolog-2. Arterioscler Thromb Vasc Biol. 2015;35:664–74.

    Article  CAS  PubMed  Google Scholar 

  26. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.

    Article  CAS  PubMed  Google Scholar 

  27. Xue Z, Yilan D, Ping J, Fei M. Bioinformatic analysis of cancer-related microRNAs and their target genes. Yi Chuan. 2015;37:855–64.

    Google Scholar 

  28. Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, Descamps B, Floris I, Sangalli E, Vono R, et al. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res. 2013;112:335–46.

    Article  CAS  PubMed  Google Scholar 

  29. Ovchinnikova ES, Schmitter D, Vegter EL, Ter Maaten JM, Valente MAE, Liu LCY, van der Harst P, Pinto YM, de Boer RA, Meyer S, et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail. 2016;18:414–23.

    Article  CAS  PubMed  Google Scholar 

  30. Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res. 2012;93:583–93.

    Article  CAS  PubMed  Google Scholar 

  31. Merkerova M, Vasikova A, Belickova M, Bruchova H. MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev. 2010;19:17–26.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenberg, H.F. Vertebrate secretory (RNAse A) ribonucleases and host defense. In Ribonucleases; Nicholson, A.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 26, pp. 35–53.

    Google Scholar 

  33. Benner SA. Extracellular “communicator RNA”. FEBS Lett. 1988;233:225–8.

    Article  CAS  PubMed  Google Scholar 

  34. Diederichs S, Bartsch L, Berkmann JC, Fröse K, Heitmann J, Hoppe C, Iggena D, Jazmati D, Karschnia P, Linsenmeier M, et al. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med. 2016;8:442–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karlsson O, Baccarelli AA. Environmental health and long non-coding RNAs. Curr Environ Health Rep. 2016;3:178–87.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Karlsson O, Rodosthenous RS, Jara C, Brennan KJ, Wright RO, Baccarelli AA, Wright RJ. Detection of long non-coding RNAs in human breastmilk extracellular vesicles: implications for early child development. Epigenetics. 2016;11:721–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10,513–8.

    Article  CAS  Google Scholar 

  38. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  39. Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27,066.

    Article  Google Scholar 

  40. Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22:182–93.

    CAS  PubMed  Google Scholar 

  41. Nardi Fda S, Michelon TF, Neumann J, Manvailer LFS, Wagner B, Horn PA, Bicalho Mda G, Rebmann V. High levels of circulating extracellular vesicles with altered expression and function during pregnancy. Immunobiology. 2016;221:753–60.

    Article  PubMed  Google Scholar 

  42. Burnett LA, Nowak RA. Exosomes mediate embryo and maternal interactions at implantation and during pregnancy. Front Biosci. 2016;8:79–96.

    Article  Google Scholar 

  43. Mouillet J-F, Chu T, Sadovsky Y. Expression patterns of placental microRNAs. Birth Defects Res A Clin Mol Teratol. 2011;91:737–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bidarimath M, Khalaj K, Wessels JM, Tayade C. MicroRNAs, immune cells and pregnancy. Cell Mol Immunol. 2014;11:538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Winger EE, Reed JL, Ji X. First-trimester maternal cell microRNA is a superior pregnancy marker to immunological testing for predicting adverse pregnancy outcome. J Reprod Immunol. 2015;110:22–35.

    Article  CAS  PubMed  Google Scholar 

  46. Chim SSC, Shing TKF, Hung ECW, Leung T-Y, Lau T-K, Chiu RWK, Lo YMD. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54:482–90.

    Article  CAS  PubMed  Google Scholar 

  47. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy- associated miRNA-clusters. J Reprod Immunol. 2013;97:51–61.

    Article  CAS  PubMed  Google Scholar 

  48. Hassan SS, Romero R, Pineles B, Tarca AL, Montenegro D, Erez O, Mittal P, Kusanovic JP, Mazaki-Tovi S, Espinoza J, et al. MicroRNA expression profiling of the human uterine cervix after term labor and delivery. Am J Obstet Gynecol. 2010;202(80):e1–80.e8.

    Google Scholar 

  49. Williams KC, Renthal NE, Condon JC, Gerard RD, Mendelson CR. MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc Natl Acad Sci U S A. 2012;109:7529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong FCK, Lo YMD. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu Rev Med. 2016;67:419–32.

    Article  CAS  PubMed  Google Scholar 

  51. Li J, Zhang Y, Li D, Liu Y, Chu D, Jiang X, Hou D, Zen K, Zhang C-Y. Small non-coding RNAs transfer through mammalian placenta and directly regulate fetal gene expression. Protein Cell. 2015;6:391–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Morisaki S, Miura K, Higashijima A, Abe S, Miura S, Hasegawa Y, Yoshida A, Kaneuchi M, Yoshiura K, Masuzaki H. Effect of labor on plasma concentrations and postpartum clearance of cell-free, pregnancy-associated, placenta-specific microRNAs. Prenat Diagn. 2015;35:44–50.

    Article  CAS  PubMed  Google Scholar 

  53. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96:544–51.

    Article  CAS  PubMed  Google Scholar 

  54. Cretoiu D, Xu J, Xiao J, Suciu N, Cretoiu SM. Circulating microRNAs as potential molecular biomarkers in pathophysiological evolution of pregnancy. Dis Markers. 2016;2016:1–7.

    Article  Google Scholar 

  55. Lillycrop KA, Burdge GC. Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab. 2012;26:667–76.

    Article  PubMed  Google Scholar 

  56. Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6:2165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res. 2010;67:357–62. https://doi.org/10.1203/PDR.0b013e3181d026da.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Luby JL, Belden AC, Whalen D, Harms MP, Barch DM. Breastfeeding and childhood IQ: the mediating role of gray matter volume. J Am Acad Child Adolesc Psychiatry. 2016;55:367–75. https://doi.org/10.1016/j.jaac.2016.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parylak SL, Deng W, Gage FH. Mother’s milk programs offspring’s cognition. Nat Neurosci. 2014;17:8–9. https://doi.org/10.1038/nn.3611.

    Article  CAS  PubMed  Google Scholar 

  60. Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health. 2015;12:13,981–4,020. https://doi.org/10.3390/ijerph121113981.

    Article  CAS  Google Scholar 

  61. Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci Rep. 2016;6:20680. https://doi.org/10.1038/srep20680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Floris I, Billard H, Boquien CY, Joram-Gauvard E, Simon L, Legrand A, Boscher C, Roze JC, Bolanos-Jimenez F, Kaeffer B. miRNA analysis by quantitative PCR in preterm human breast milk reveals daily fluctuations of hsa-miR-16–5p. PLoS One. 2015;10:e0140488. https://doi.org/10.1371/journal.pone.0140488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk cells contain numerous miRNAs that may change with milk removal and regulate multiple physiological processes. Int J Mol Sci. 2016;17:956. https://doi.org/10.3390/ijms17060956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Munch EM, Harris RA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, Hu M, Shope CD, Maningat PD, Gunaratne PH, et al. Transcriptome profiling of microRNA by next-gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS One. 2013;8:e50564. https://doi.org/10.1371/journal.pone.0050564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–92. https://doi.org/10.1111/j.1349-7006.2010.01650.x.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012;8:118–23. https://doi.org/10.7150/ijbs.8.118.

    Article  CAS  PubMed  Google Scholar 

  67. Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger A-J, Metzger P, Trengove N, Lai CT, Filgueira L, Blancafort P, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30:2164–74. https://doi.org/10.1002/stem.1188.

    Article  PubMed  Google Scholar 

  68. Benmoussa A, Lee CHC, Laffont B, Savard P, Laugier J, Boilard E, Gilbert C, Fliss I, Provost P. Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr. 2016;146:2206–15. https://doi.org/10.3945/jn.116.237651.

    Article  CAS  PubMed  Google Scholar 

  69. Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk cells and lipids conserve numerous known and novel miRNAs, some of which are differentially expressed during lactation. PLoS One. 2016;11:e0152610. https://doi.org/10.1371/journal.pone.0152610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22:107–26. https://doi.org/10.1038/cr.2011.158.

    Article  CAS  PubMed  Google Scholar 

  71. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014;144:1495–500. https://doi.org/10.3945/jn.114.196436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zempleni J, Baier SR, Howard KM, Cui J. Gene regulation by dietary microRNAs. Can J Physiol Pharmacol. 2015;93:1097–102. https://doi.org/10.1139/cjpp-2014-0392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J. Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis. Am J Physiol Cell Physiol. 2016;310:C800–7. https://doi.org/10.1152/ajpcell.00169.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Melnik BC, Kakulas F, Geddes DT, Hartmann PE, John SM, Carrera-Bastos P, Cordain L, Schmitz G. Milk miRNAs: simple nutrients or systemic functional regulators? Nutr Metab. 2016;13:1–5. https://doi.org/10.1186/s12986-016-0101-2.

    Article  CAS  Google Scholar 

  75. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R. miR-148 targets human DNMT3b protein coding region. RNA. 2008;14:872–7. https://doi.org/10.1261/rna.972008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Elliott EN, Sheaffer KL, Kaestner KH. The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. elife. 2016;5:e12975. https://doi.org/10.7554/eLife.12975.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Roostaee A, Benoit YD, Boudjadi S, Beaulieu J-F. Epigenetics in intestinal epithelial cell renewal. J Cell Physiol. 2016;231:2361–7. https://doi.org/10.1002/jcp.25401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, Haymond MW. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics. 2009;37:12–22. https://doi.org/10.1152/physiolgenomics.90341.2008.

    Article  CAS  PubMed  Google Scholar 

  79. Li Z, Liu H, Jin X, Lo L, Liu J. Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics. 2012;13:731. https://doi.org/10.1186/1471-2164-13-731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, Zhou Q, Chen L, Lang Q, He Z, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One. 2012;7:e43691. https://doi.org/10.1371/journal.pone.0043691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey. PLoS One. 2014;9:e88843. https://doi.org/10.1371/journal.pone.0088843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Muroya S, Hagi T, Kimura A, Aso H, Matsuzaki M, Nomura M. Lactogenic hormones alter cellular and extracellular microRNA expression in bovine mammary epithelial cell culture. J Anim Sci Biotechnol. 2016;7:8. https://doi.org/10.1186/s40104-016-0068-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Singh R, Mo Y-Y. Role of microRNAs in breast cancer. Cancer Biol Ther. 2013;14:201–12. https://doi.org/10.4161/cbt.23296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006. https://doi.org/10.1038/cr.2008.282.

    Article  CAS  PubMed  Google Scholar 

  85. Taga I, Lan CQ, Altosaar I. Plant essential oils and mastitis disease: their potential inhibitory effects on pro-inflammatory cytokine production in response to bacteria related inflammation. Nat Prod Commun. 2012;7:675–82.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şahin, Ö.N., Briana, D.D. (2023). The Infant–Mother Molecular Conversation Involving Breast Milk mRNA. In: Şahin, Ö.N., Briana, D.D., Di Renzo, G.C. (eds) Breastfeeding and Metabolic Programming. Springer, Cham. https://doi.org/10.1007/978-3-031-33278-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33278-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33277-7

  • Online ISBN: 978-3-031-33278-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics