Skip to main content

Human Milk Composition: Nutrients and Bioactive Factors

  • Chapter
  • First Online:
Breastfeeding and Metabolic Programming

Abstract

It is widely accepted that the ideal way for a human infant to be nourished up to the age of 6 months is exclusive breastfeeding. Thereafter, breastfeeding with additional sources of nutrition is suitable up to the first or second birthday, or for even more prolonged periods [1, 2]. Breast milk is the sole food which precisely addresses the developmental requirements of the infant, providing both nutritional elements and bioactive compounds to ensure survival as well as healthy growth [3]. In this chapter, the nutritional and bioactive elements of breast milk are summarised. The latter category includes cells, molecules which target infectious pathogens and dampen down inflammation, growth factors and prebiotics. Breast milk differs from artificial substitutes insofar as the latter is of essentially fixed composition, whereas breast milk varies considerably in its constituents, whether in a single nursing session, over the course of the day or over the whole period of lactation. Human milk composition differs from mother to mother, as it does between populations. There are a number of reasons for this variable composition, including factors related to both the mother and the surrounding environment, as well as to the way milk is expressed and the feeding pattern. Knowledge of the constituents of breast milk is vital, in order to best utilise the opportunities breastfeeding offers, especially for those children who are most vulnerable to adverse outcomes, and to inform discussion about how breast milk can potentially be stored and whether it should be pasteurised. The chapter will also discuss bioactive factors which have been identified as potential prophylactic or therapeutic agents and may be suitable to undergo pharmaceutical development and testing [3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballard O, Morrow AL. Human Milk composition: nutrients and bioactive factors. Pediatr Clin N Am. 2013;60(1):49–74. https://doi.org/10.1016/j.pcl.2012.10.002.

    Article  Google Scholar 

  2. Breastfeeding and the use of human milk. Pediatrics. 2012;129(3):e827–41.

    Article  Google Scholar 

  3. Oftedal OT. The evolution of milk secretion and its ancient origins. Animal. 2012;6(3):355–68.

    Article  CAS  PubMed  Google Scholar 

  4. Castellote C, Casillas R, Ramirez-Santana C, Perez-Cano FJ, Castell M, Moretones MG, Lopez- Sabater MC, Franch A. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutr. 2011;141(6):1181–7.

    Article  CAS  PubMed  Google Scholar 

  5. Pang WW, Hartmann PE. Initiation of human lactation: secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia. 2007;12(4):211–21.

    Article  PubMed  Google Scholar 

  6. Kulski JK, Hartmann PE. Changes in human milk composition during the initiation of lactation. Aust J Exp Biol Med Sci. 1981;59(1):101–14.

    Article  CAS  PubMed  Google Scholar 

  7. Henderson JJ, Hartmann PE, Newnham JP, Simmer K. Effect of preterm birth and antenatal corticosteroid treatment on lactogenesis II in women. Pediatrics. 2008;121(1):e92–100.

    Article  PubMed  Google Scholar 

  8. Nommsen-Rivers LA, Dolan LM, Huang B. Timing of stage II lactogenesis is predicted by antenatal metabolic health in a cohort of primiparas. Breastfeed Med. 2012;7(1):43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cregan MD, De Mello TR, Kershaw D, McDougall K, Hartmann PE. Initiation of lactation in women after preterm delivery. Acta Obstet Gynecol Scand. 2002;81(9):870–7.

    Article  PubMed  Google Scholar 

  10. Nommsen LA, Lovelady CA, Heinig MJ, Lonnerdal B, Dewey KG. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: the DARLING study. Am J Clin Nutr. 1991;53(2):457–65.

    Article  CAS  PubMed  Google Scholar 

  11. Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr (Edinburgh, Scotland). 2011;30(2):215–20.

    Article  CAS  Google Scholar 

  12. Geraghty SR, Davidson BS, Warner BB, Sapsford AL, Ballard JL, List BA, Akers R, Morrow AL. The development of a research human milk bank. J Hum Lact. 2005;21(1):59–66.

    Article  PubMed  Google Scholar 

  13. Prentice A. Regional variations in the composition of human milk. In: Jensen RG, editor. Handbook of milk composition. San Diego, CA: Academic Press, Inc.; 1995. p. 919.

    Google Scholar 

  14. Liao Y, Alvarado R, Phinney B, Lonnerdal B. Proteomic characterization of human milk whey proteins during a twelve-month lactation period. J Proteome Res. 2011;10(4):1746–54.

    Article  CAS  PubMed  Google Scholar 

  15. Gao X, McMahon RJ, Woo JG, Davidson BS, Morrow AL, Zhang Q. Temporal changes in milk proteomes reveal developing milk functions. J Proteome Res. 2012;11(7):3897–907.

    Article  CAS  PubMed  Google Scholar 

  16. Lonnerdal B. Human milk proteins: key components for the biological activity of human milk. Adv Exp Med Biol. 2004;554:11–25.

    Article  CAS  PubMed  Google Scholar 

  17. Jensen RG. Handbook of milk composition. San Diego, CA: Academic Press, Inc.; 1995. Pediatr Clin North Am. Author manuscript; available in PMC 2014 February 01.

    Google Scholar 

  18. Valentine CJ, Morrow G, Fernandez S, Gulati P, Bartholomew D, Long D, Welty SE, Morrow AL, Rogers LK. Docosahexaenoic acid and amino acid contents in pasteurized donor Milk are low for preterm infants. J Pediatr. 2010;157(6):906–10.

    Article  CAS  PubMed  Google Scholar 

  19. Saarela T, Kokkonen J, Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005;94(9):1176–81.

    Article  PubMed  Google Scholar 

  20. Kent JC, Mitoulas LR, Cregan MD, Ramsay DT, Doherty DA, Hartmann PE. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics. 2006;117(3):e387–95.

    Article  PubMed  Google Scholar 

  21. Valentine CJ, Morrow G, Pennell M, Morrow AL, Hodge A, Haban-Bartz A, Collins K, Rogers LK. Randomized controlled trial of docosahexaenoic acid supplementation in midwestern U.S. human milk donors. Breastfeed Med. 2012; https://doi.org/10.1089/bfm.2011.0126.

  22. Martin MA, Lassek WD, Gaulin SJ, Evans RW, Woo JG, Geraghty SR, Davidson BS, Morrow AL, Kaplan HS, Gurven MD. Fatty acid composition in the mature milk of Bolivian forager- horticulturalists: controlled comparisons with a US sample. Matern Child Nutr. 2012;8(3):404–18.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005;25:37–58.

    Article  CAS  PubMed  Google Scholar 

  24. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr. 2005;135(5):1304–7.

    Article  CAS  PubMed  Google Scholar 

  25. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, Giuliani F, Bertino E, Fabris C, Coppa GV. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011;128(6):e1520–31.

    Article  PubMed  Google Scholar 

  26. Michaelsen KF, Skafte L, Badsberg JH, Jorgensen M. Variation in macronutrients in human bank milk: influencing factors and implications for human milk banking. J Pediatr Gastroenterol Nutr. 1990;11(2):229–39.

    Article  CAS  PubMed  Google Scholar 

  27. Arslanoglu S, Moro GE, Ziegler EE. The Wapm Working Group on nutrition. Optimization of human milk fortification for preterm infants: new concepts and recommendations. J Perinat Med. 2010;38(3):233–8.

    Article  CAS  PubMed  Google Scholar 

  28. Greer FR. Do breastfed infants need supplemental vitamins? Pediatr Clin N Am. 2001;48(2):415–23.

    Article  CAS  Google Scholar 

  29. Allen LH. B vitamins in breast milk: relative importance of maternal status and intake, and effects on infant status and function. Adv Nutr. 2012;3(3):362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dawodu A, Zalla L, Woo JG, Herbers PM, Davidson BS, Heubi JE, Morrow AL. Heightened attention to supplementation is needed to improve the vitamin D status of breastfeeding mothers and infants when sunshine exposure is restricted. Matern Child Nutr. 2012;10:383.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pediatrics, AAo. Pediatric nutrition handbook. 6th ed. Elk Gove Village, IL: American Academy of Pediatrics; 2009.

    Google Scholar 

  32. Korhonen H, Marnila P, Gill HS. Milk immunoglobulins and complement factors. Br J Nutr. 2000 Nov;84 Suppl 1:S75–80.

    Google Scholar 

  33. Garofalo R. Cytokines in human milk. J Pediatr. 2010;156(2 Suppl):S36–40.

    Article  CAS  PubMed  Google Scholar 

  34. Cavaletto M, Giuffrida MG, Conti A. The proteomic approach to analysis of human milk fat globule membrane. Clin Chim Acta. 2004;347(1–2):41–8.

    Article  CAS  PubMed  Google Scholar 

  35. Van de Perre P. Transfer of antibody via mother’s milk. Vaccine. 2003;21(24):3374–6.

    Article  PubMed  Google Scholar 

  36. Kobata R, Tsukahara H, Ohshima Y, Ohta N, Tokuriki S, Tamura S, Mayumi M. High levels of growth factors in human breast milk. Early Hum Dev. 2008;84(1):67–9.

    Article  CAS  PubMed  Google Scholar 

  37. Patki S, Patki U, Patil R, Indumathi S, Kaingade P, Bulbule A, Nikam A, Pishte A. Comparison of the levels of the growth factors in umbilical cord serum and human milk and its clinical significance. Cytokine. 2012;59(2):305–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hirai C, Ichiba H, Saito M, Shintaku H, Yamano T, Kusuda S. Trophic effect of multiple growth factors in amniotic fluid or human milk on cultured human fetal small intestinal cells. JPGN. 2002;34:524–8.

    PubMed  Google Scholar 

  39. Chailler P, Menard D. Ontogeny of EGF receptors in the human gut. Front Biosci. 1999;4:87–101.

    Article  Google Scholar 

  40. Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clinic Rev Allerg Immunol. 2008;34:191–204.

    Article  Google Scholar 

  41. Read LC, Upton FM, Francis GL, Wallace JC, Dahlenberg GW, Ballad FJ. Changes in the growth- promoting activity of human milk during lactation. Pediatr Res. 1984;18(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  42. Chang C-Y, Chao JC-J. Effect of human milk and epidermal growth factor on growth of human intestinal caco-2 cells. JPGN. 2002;34:394–401.

    CAS  PubMed  Google Scholar 

  43. Khailova L, Dvorak K, Arganbright KM, Williams CS, Halpern MD, Dvorak B. Changes in hepatic cell junctions structure during experimental necrotizing enterocolitis: effect of EGF treatment. Pediatr Res. 2009;66(2):140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Radulescu A, Zhang H-Y, Chen C-L, Chen Y, Zhou Y, Yu X, Otabor I, Olson JK, Besner GE. Heparin-binding EGF-like growth factor promotes intestinal anastomotic healing. J Surg Res. 2011;171:540–50.

    Article  CAS  PubMed  Google Scholar 

  45. Dvorak B, Fituch CC, Williams CS, Hurst NM, Schanler RJ. Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr Res. 2003;54(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  46. Dvorak B, Fituch CC, Williams CS, Hurst NM, Schanler RJ. Concentrations of epidermal growth factor and transforming growth factor-alpha in preterm milk. In: Pickering LK, et al., editors. Protecting infants through human milk. Kluwer Academic/Plenum Publishers; 2004. p. 407–9.

    Chapter  Google Scholar 

  47. Rodrigues D, Li A, Nair D, Blennerhassett M. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil. 2011;23:e44–56.

    Article  CAS  PubMed  Google Scholar 

  48. Boesmans W, Gomes P, Janssens J, Tack J, Berghe PV. Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut. 2008;57:314–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Özdemir, S.A., Şahin, Ö.N., Briana, D.D. (2023). Human Milk Composition: Nutrients and Bioactive Factors. In: Şahin, Ö.N., Briana, D.D., Di Renzo, G.C. (eds) Breastfeeding and Metabolic Programming. Springer, Cham. https://doi.org/10.1007/978-3-031-33278-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33278-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33277-7

  • Online ISBN: 978-3-031-33278-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics