Skip to main content

Virtual Pairwise Consistency in Cost Function Networks

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2023)

Abstract

In constraint satisfaction, pairwise consistency (PWC) is a well-known local consistency improving generalized arc consistency in theory but not often in practice. A popular approach to enforcing PWC enforces arc consistency on the dual encoding of the problem, allowing to reuse existing AC algorithms. In this paper, we explore the benefit of this simple approach in the optimization context of cost function networks and soft local consistencies. Using a dual encoding, we obtain an equivalent binary cost function network where enforcing virtual arc consistency achieves virtual PWC on the original problem. We experimentally observed that adding extra non-binary cost functions before the dual encoding results in even stronger bounds. Such supplementary cost functions may be produced by bounded variable elimination or by adding ternary zero-cost functions. Experiments on (probabilistic) graphical models, from the UAI 2022 competition benchmark, show a clear improvement when using our approach inside a branch-and-bound solver compared to the state-of-the-art.

This research was funded by the grants ANR-18-EURE-0021 and ANR-19-P3IA-0004. It receives support from the Genotoul (Toulouse) Bioinformatic platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This corresponds to full PWC because unary constraints may appear in these pairs.

  2. 2.

    This is unsurprising because the strongest bound that can be derived using EPTs is obtained using a linear program which includes pairwise consistency constraints [34].

  3. 3.

    https://uaicompetition.github.io/uci-2022, see MPE and MMAP entries.

  4. 4.

    http://auai.org/uai2014/competition.shtml, http://miat.inrae.fr/toulbar2.

  5. 5.

    Options -A -P=1000 -T=1000 -vacint -vacthr -rasps -raspsini in toulbar2-vacint.

  6. 6.

    Called double encoding in [26], it allows more flexibility to enforce various levels of consistency from GAC to PWC depending on the selected channeling constraints.

  7. 7.

    The resulting non-minimal graph for Example 2 is shown in Fig. 1(d).

  8. 8.

    It is done only if the median degree in the original problem is less than 8, eliminating variables with a current degree less than or equal to the original median degree.

  9. 9.

    With additional options -i -pils -p = -8 -O = −3 -t = 1. A triangle is defined by three variables involved in three binary cost functions. The score of a triangle is given by the average cost in the three functions. Triangles with the largest score are selected first. This approach allows to simulate soft path inverse consistency [22].

  10. 10.

    See toulbar2-ipr results on the UAI 2022 Tuning Leader Board. Multiple runs of VNS with increasing floating-point precision were done with a total amount of time of \(\frac{1}{2}\)h. The remaining time is allocated to HBFS-VPWC. Each search procedure gives its best solution found to the next search procedure. On UAI 2022 tuning instances, this approach found 119 best solutions, ranking first among our 7 tested methods.

References

  1. Allouche, D., et al.: Computational protein design as an optimization problem. Artif. Intell. 212, 59–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensana, E., Lemaître, M., Verfaillie, G.: Earth observation satellite management. Constraints 4(3), 293–299 (1999)

    Article  MATH  Google Scholar 

  3. Beuvin, F., de Givry, S., Schiex, T., Verel, S., Simoncini, D.: Iterated local search with partition crossover for computational protein design. Proteins Struct. Funct. Bioinf. 87, 1522–1529 (2021)

    Article  Google Scholar 

  4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI. vol. 16, p. 146 (2004)

    Google Scholar 

  5. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency assignment. Constraints J. 4, 79–89 (1999)

    Article  MATH  Google Scholar 

  6. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artif. Intell. 174(7–8), 449–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, M.C.: High-order consistency in valued constraint satisfaction. Constraints 10, 283–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cooper, M.C., de Givry, S., Schiex, T.: Graphical models: queries, complexity, algorithms (tutorial). In: 37th International Symposium on Theoretical Aspects of Computer Science (STACS-20). LIPIcs, vol. 154, pp. 4:1–4:22. Montpellier, France (2020)

    Google Scholar 

  9. Cooper, M.C., de Givry, S., Schiex, T.: Valued constraint satisfaction problems. In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intelligence Research, pp. 185–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-06167-8_7

    Chapter  Google Scholar 

  10. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell. 113(1–2), 41–85 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dechter, R., Rish, I.: Mini-buckets: a general scheme for bounded inference. J. ACM (JACM) 50(2), 107–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demirović, E., Chu, G., Stuckey, P.J.: Solution-based phase saving for CP: a value-selection heuristic to simulate local search behavior in complete solvers. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 99–108. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_7

    Chapter  Google Scholar 

  13. Dlask, T., Werner, T., de Givry, S.: Bounds on weighted CSPs using constraint propagation and super-reparametrizations. In: Proceedings of CP-21. Montpellier, France (2021)

    Google Scholar 

  14. Favier, A., de Givry, S., Legarra, A., Schiex, T.: Pairwise decomposition for combinatorial optimization in graphical models. In: Proceedings of IJCAI-11. Barcelona, Spain (2011). http://www.inra.fr/mia/T/degivry/Favier11.mov

  15. Hurley, B., et al.: Multi-language evaluation of exact solvers in graphical model discrete optimization. Constraints 21(3), 413–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janssen, P., Jégou, P., Nouguier, B., Vilarem, M.C.: A filtering process for general constraint-satisfaction problems: achieving pairwise-consistency using an associated binary representation. In: IEEE International Workshop on Tools for Artificial Intelligence, pp. 420–421. IEEE Computer Society (1989)

    Google Scholar 

  17. Kappes, J.H., et al.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Intl. J. of Comput. Vis. 115(2), 155–184 (2015)

    Article  MathSciNet  Google Scholar 

  18. Larrosa, J.: Boosting search with variable elimination. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 291–305. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45349-0_22

    Chapter  Google Scholar 

  19. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted CSPs. In: Proceedings of IJCAI 2005, pp. 193–198. Edinburgh, Scotland (2005)

    Google Scholar 

  20. Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in constraint programming. Artif. Intell. 173, 1592–1614 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Neveu, B., Trombettoni, G., Glover, F.: ID Walk: a candidate list strategy with a simple diversification device. In: Proceedings of CP, pp. 423–437 (2004)

    Google Scholar 

  22. Nguyen, H., Bessiere, C., de Givry, S., Schiex, T.: Triangle-based consistencies for cost function networks. Constraints 22(2), 230–264 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Otten, L., Ihler, A., Kask, K., Dechter, R.: Winning the pascal 2011 map challenge with enhanced AND/OR branch-and-bound. In: DISCML 2012 Workshop, at NIPS 2012. Lake Tahoe, NV (2012)

    Google Scholar 

  24. Quali, A.: Variable neighborhood search for graphical model energy minimization. Artif. Intell. 278(103194), 22p (2020)

    MathSciNet  Google Scholar 

  25. Rossi, F., Petrie, C.J., Dhar, V.: On the equivalence of constraint satisfaction problems. In: ECAI, vol. 90, pp. 550–556 (1990)

    Google Scholar 

  26. Samaras, N., Stergiou, K.: Binary encodings of non-binary constraint satisfaction problems: algorithms and experimental results. J. Artif. Intell. Res. 24, 641–684 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sánchez, M., de Givry, S., Schiex, T.: Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques. Constraints 13(1), 130–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Savchynskyy, B.: Discrete graphical models - an optimization perspective. Found. Trends Comput. Graph. Vis. 11(3–4), 160–429 (2019)

    Article  MATH  Google Scholar 

  29. Schneider, A., Choueiry, B.Y.: PW-AC: extending compact-table to enforce pairwise consistency on table constraints. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 345–361. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_23

    Chapter  Google Scholar 

  30. Trösser, F., de Givry, S., Katsirelos, G.: Relaxation-aware heuristics for exact optimization in graphical models. In: Proceedings of CP-AI-OR’2020, pp. 475–491. Vienna, Austria (2020)

    Google Scholar 

  31. Wainwright, M.J., Jordan, M.I., et al.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    Article  MATH  Google Scholar 

  32. Wang, R., Yap, R.H.C.: Arc consistency revisited. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 599–615. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_40

    Chapter  Google Scholar 

  33. Wang, R., Yap, R.H.: Bipartite encoding: a new binary encoding for solving non-binary CSPs. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 1184–1191 (2021)

    Google Scholar 

  34. Werner, T.: Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1474–1488 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon de Givry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montalbano, P., Allouche, D., de Givry, S., Katsirelos, G., Werner, T. (2023). Virtual Pairwise Consistency in Cost Function Networks. In: Cire, A.A. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. Lecture Notes in Computer Science, vol 13884. Springer, Cham. https://doi.org/10.1007/978-3-031-33271-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33271-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33270-8

  • Online ISBN: 978-3-031-33271-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics