Skip to main content

ZDD-Based Algorithmic Framework forĀ Solving Shortest Reconfiguration Problems

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2023)

Abstract

This paper proposes an algorithmic framework for solving various combinatorial reconfiguration problems by using zero-suppressed binary decision diagrams (ZDDs), a data structure for representing families of sets. In general, a reconfiguration problem checks if there is a step-by-step transformation between two given feasible solutions (e.g., independent sets of an input graph) of a fixed search problem, such that all intermediate results are also feasible and each step obeys a fixed reconfiguration rule (e.g., adding/removing a single vertex to/from an independent set). The solution space formed by all feasible solutions can be exponential in the input size, and indeed, many reconfiguration problems are known to be PSPACE-complete. This paper shows that an algorithm in the proposed framework efficiently conducts breadth-first search by compressing the solution space using ZDDs, and that it finds a shortest transformation between two given feasible solutions if such a transformation exists. Moreover, the proposed framework provides rich information on the solution space, such as its connectivity and all feasible solutions that are reachable from a specified one. Finally, we demonstrate that the proposed framework can be applied to various reconfiguration problems, and experimentally evaluate its performance.

Partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP19H01103, JP19H04068, JP19K11814, JP20K11666, JP20K11748, JP20H05793 and JP20H05794, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://core-challenge.github.io/2022/.

  2. 2.

    https://core-challenge.github.io/2022result/.

  3. 3.

    https://github.com/Shin-ichi-Minato/SAPPOROBDD.

  4. 4.

    https://github.com/junkawahara/ddreconf-experiments2023.

  5. 5.

    https://github.com/junkawahara/ddreconf.

References

  1. Akitaya, H.A., et al.: Reconfiguration of connected graph partitions. J. Graph Theory 102(1), 35ā€“66 (2023). https://doi.org/10.1002/jgt.22856. https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22856

  2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theoret. Comput. Sci. 410(50), 5215ā€“5226 (2009). https://doi.org/10.1016/j.tcs.2009.08.023

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35(8), 677ā€“691 (1986). https://doi.org/10.1109/TC.1986.1676819

  4. Castro, M.P., Cire, A.A., Beck, J.C.: Decision diagrams for discrete optimization: a survey of recent advances. INFORMS J. Comput. 34(4), 2271ā€“2295 (2022). https://doi.org/10.1287/ijoc.2022.1170

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. Censor-Hillel, K., Rabie, M.: Distributed reconfiguration of maximal independent sets. J. Comput. Syst. Sci. 112, 85ā€“96 (2020). https://doi.org/10.1016/j.jcss.2020.03.003. https://www.sciencedirect.com/science/article/pii/S0022000020300349

  6. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math. 308(5ā€“6), 913ā€“919 (2008). https://doi.org/10.1016/j.disc.2007.07.028

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359ā€“364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

    ChapterĀ  Google ScholarĀ 

  8. Coudert, O.: Solving graph optimization problems with ZBDDs. In: Proceedings European Design and Test Conference, ED & TC 1997, pp. 224ā€“228 (1997). https://doi.org/10.1109/EDTC.1997.582363

  9. Fifield, B., Imai, K., Kawahara, J., Kenny, C.T.: The essential role of empirical validation in legislative redistricting simulation. Stat. Public Policy 7(1), 52ā€“68 (2020). https://doi.org/10.1080/2330443X.2020.1791773

    ArticleĀ  Google ScholarĀ 

  10. Hayase, K., Sadakane, K., Tani, S.: Output-size sensitiveness of OBDD construction through maximal independent set problem. In: Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 229ā€“234. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0030837

    ChapterĀ  Google ScholarĀ 

  11. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society Lecture No te Series, vol.Ā 409, pp. 127ā€“160. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139506748.005

  12. Inoue, T., et al.: Distribution loss minimization with guaranteed error bound. IEEE Trans. Smart Grid 5(1), 102ā€“111 (2014). https://doi.org/10.1109/TSG.2013.2288976

    ArticleĀ  Google ScholarĀ 

  13. Ito, T.: On the complexity of reconfiguration problems. Theoret. Comput. Sci. 412(12ā€“14), 1054ā€“1065 (2011). https://doi.org/10.1016/j.tcs.2010.12.005

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. Iwashita, H., Minato, S.: Efficient top-down ZDD construction techniques using recursive specifications. TCS Technical reports TCS-TR-A-13-69 (2013)

    Google ScholarĀ 

  15. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theoret. Comput. Sci. 439, 9ā€“15 (2012). https://doi.org/10.1016/j.tcs.2012.03.004

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enumerating all constrained subgraphs with compressed representation. IEICE Trans. Fund. Electron. Commun. Comput. Sci. E100-A(9), 1773ā€“1784 (2017). https://doi.org/10.1587/transfun.E100.A.1773

  17. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Solving the longest oneway-ticket problem and enumerating letter graphs by augmenting the two representative approaches with ZDDs. In: Proceedings of the Computational Intelligence in Information Systems Conference (CIIS 2016), vol. 532, pp. 294ā€“305 (2016). https://doi.org/10.1007/978-3-319-48517-1_26

  18. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Colorful frontier-based search: implicit enumeration of chordal and interval subgraphs. In: Kotsireas, I., Pardalos, P., Parsopoulos, K.E., Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol. 11544, pp. 125ā€“141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34029-2_9

    ChapterĀ  Google ScholarĀ 

  19. Knuth, D.E.: The Art of Computer Programming, Volume 4A, Combinatorial Algorithms, Part 1, 1st edn. Addison-Wesley Professional (2011)

    Google ScholarĀ 

  20. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272ā€“277 (1993). https://doi.org/10.1145/157485.164890

  21. Mizuta, H., Ito, T., Zhou, X.: Reconfiguration of steiner trees in an unweighted graph. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(7), 1532ā€“1540 (2017). https://doi.org/10.1587/transfun.E100.A.1532

  22. Nakahata, Yu., Kawahara, J., Horiyama, T., Minato, S.: Implicit enumeration of topological-minor-embeddings and its application to planar subgraph enumeration. In: Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol. 12049, pp. 211ā€“222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39881-1_18

    ChapterĀ  MATHĀ  Google ScholarĀ 

  23. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018). https://doi.org/10.3390/a11040052

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  24. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of moderate size. In: Proceedings of the 6th International Symposium on Algorithms and Computation, pp. 224ā€“233 (1995). https://doi.org/10.1007/BFb0015427

  25. Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: solver and graph descriptions. CoRR abs/2208.02495 (2022). https://doi.org/10.48550/arXiv.2208.02495

  26. Speck, D., MattmĆ¼ller, R., Nebel, B.: Symbolic top-k planning. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7ā€“12 February 2020, pp. 9967ā€“9974. AAAI Press (2020). https://ojs.aaai.org/index.php/AAAI/article/view/6552

  27. Turau, V., Weyer, C.: Finding shortest reconfigurations sequences of independent sets. In: Core Challenge 2022: Solver and Graph Descriptions, pp. 3ā€“14 (2022)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ito, T. et al. (2023). ZDD-Based Algorithmic Framework forĀ Solving Shortest Reconfiguration Problems. In: Cire, A.A. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. Lecture Notes in Computer Science, vol 13884. Springer, Cham. https://doi.org/10.1007/978-3-031-33271-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33271-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33270-8

  • Online ISBN: 978-3-031-33271-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics