Skip to main content

Introduction

  • Chapter
  • First Online:
Silica Fume in Geopolymers

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 71 Accesses

Abstract

Silica fume (SF) is a by-product of ferrosilicon alloys or the silicon metal industry. Due to its high fineness and amorphous silica, it is widely used in Portland cement (PC) systems as a cementitious material to enhance the durability and mechanical properties. In recent developments, numerous studies have been implemented to obtain superior properties of various types of geopolymer by incorporating SF. On the whole, SF can be recycled into geopolymers in three various forms: as an additive to the precursor or as a part of a precursor, as a part of an activator or as a foaming agent. Recycling SF into various geopolymer types may have a positive effect or an adverse effect. This mainly depends on precursor/SF fineness, activator concentration and type, activator/binder ratio, testing age, curing condition, SF amount and Si/Al ratio. The target of this document is to review, summarize and analyse the past studies focused on the effect of SF, in its three various forms, on the properties of geopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Rashad, A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—a guide for civil engineer. Constr. Build. Mater. 47, 29–55 (2013)

    Article  Google Scholar 

  2. A.M. Rashad, A brief on high-volume class F fly ash as cement replacement—a guide for civil engineer. Int. J. Sustain. Built Environ. 4(2), 278–306 (2015)

    Article  Google Scholar 

  3. A.M. Rashad, An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr. Build. Mater. 187, 89–117 (2018)

    Article  Google Scholar 

  4. A.M. Rashad, Metakaolin as cementitious material: history, scours, production and composition—a comprehensive overview. Constr. Build. Mater. 41, 303–318 (2013)

    Article  Google Scholar 

  5. A.M. Rashad, Additives to increase carbonation resistance of slag activated with sodium sulfate. ACI Mater. J. 119(2) (2022)

    Google Scholar 

  6. B.C. McLellan, R.P. Williams, J. Lay, A. Van Riessen, G.D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 19(9–10), 1080–1090 (2011)

    Article  CAS  Google Scholar 

  7. A.M. Rashad, Effect of nanoparticles on the properties of geopolymer materials. Mag. Concr. Res. 71(24), 1283–1301 (2019)

    Article  Google Scholar 

  8. A.M. Rashad, The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Mater. Sci. Technol. 35(2), 127–146 (2019)

    Article  CAS  Google Scholar 

  9. A.M. Rashad, Effect of steel fibers on geopolymer properties—the best synopsis for civil engineer. Constr. Build. Mater. 246, 118534 (2020)

    Article  CAS  Google Scholar 

  10. A.M. Rashad, Effect of limestone powder on the properties of alkali-activated materials—a critical overview. Constr. Build. Mater. 356, 129188 (2022)

    Article  CAS  Google Scholar 

  11. A. Rashad, Y. Bai, P. Basheer, N. Milestone, N. Collier, Hydration and properties of sodium sulfate activated slag. Cem. Concr. Compos. 37, 20–29 (2013)

    Article  CAS  Google Scholar 

  12. A.M. Rashad, Y. Bai, Effect of slag fineness and Na2SO4 concentration on carbonation of Na2SO4-activated slag. ACI Mater. J. 120(1) (2023)

    Google Scholar 

  13. C. Shi, A. Fernández-Jiménez, Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 137(3), 1656–1663 (2006)

    Article  CAS  Google Scholar 

  14. R. Vinai, M. Soutsos, Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem. Concr. Res. 116, 45–56 (2019)

    Article  CAS  Google Scholar 

  15. A.M. Rashad, G.M. Essa, W. Morsi, Traditional cementitious materials for thermal insulation. Arab. J. Sci. Eng., 1–13 (2022)

    Google Scholar 

  16. Y. Cheng, P. Cong, Q. Zhao, H. Hao, L. Mei, A. Zhang, Z. Han, M. Hu, Study on the effectiveness of silica fume-derived activator as a substitute for water glass in fly ash-based geopolymer. J. Build. Eng. 51, 104228 (2022)

    Article  Google Scholar 

  17. A.M. Rashad, Y.A. Mosleh, Effect of tidal zone and seawater attack on alkali-activated blended slag pastes. ACI Mater. J. 119(2) (2022)

    Google Scholar 

  18. Y. Luna-Galiano, C. Leiva, C. Arenas, C. Fernández-Pereira, Fly ash based geopolymeric foams using silica fume as pore generation agent. Phys. Mech. Acoust. Prop. J. Non-Crystal. Solids 500, 196–204 (2018)

    CAS  Google Scholar 

  19. F. Matalkah, A. Ababneh, R. Aqel, Efflorescence control in calcined kaolin-based geopolymer using silica fume and OPC. J. Mater. Civ. Eng. 33(6), 04021119 (2021)

    Article  CAS  Google Scholar 

  20. N. Billong, J. Oti, J. Kinuthia, Using silica fume based activator in sustainable geopolymer binder for building application. Constr. Build. Mater. 275, 122177 (2021)

    Article  CAS  Google Scholar 

  21. M. Uysal, M.M. Al-mashhadani, Y. Aygörmez, O. Canpolat, Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Constr. Build. Mater. 176, 271–282 (2018)

    Article  CAS  Google Scholar 

  22. Y. Jaradat, F. Matalkah, Effects of micro silica on the compressive strength and absorption characteristics of olive biomass ash-based geopolymer. Case Stud. Constr. Mater. 18, e01870 (2023)

    Google Scholar 

  23. A.M. Rashad, Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Environ. Sci. Pollut. Res. 29(3), 3784–3793 (2022)

    Article  CAS  Google Scholar 

  24. R. Bajpai, K. Choudhary, A. Srivastava, K.S. Sangwan, M. Singh, Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 254, 120147 (2020)

    Article  CAS  Google Scholar 

  25. C.B. Cheah, L.E. Tan, M. Ramli, The engineering properties and microstructure of sodium carbonate activated fly ash/slag blended mortars with silica fume. Compos. B Eng. 160, 558–572 (2019)

    Article  CAS  Google Scholar 

  26. A.M. Rashad, M.H. Khalil, A preliminary study of alkali-activated slag blended with silica fume under the effect of thermal loads and thermal shock cycles. Constr. Build. Mater. 40, 522–532 (2013)

    Article  Google Scholar 

  27. R.P. Singh, K.R. Vanapalli, V.R.S. Cheela, S.R. Peddireddy, H.B. Sharma, B. Mohanty, Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts. Constr. Build. Mater. 378, 131168 (2023)

    Article  CAS  Google Scholar 

  28. P. Kathirvel, G. Murali, Effect of using available GGBFS, silica fume, quartz powder and steel fibres on the fracture behavior of sustainable reactive powder concrete. Constr. Build. Mater. 375, 130997 (2023)

    Article  CAS  Google Scholar 

  29. R. Siddique, Utilization of silica fume in concrete: review of hardened properties. Resour. Conserv. Recycl. 55(11), 923–932 (2011)

    Article  Google Scholar 

  30. M.I. Khan, R. Siddique, Utilization of silica fume in concrete: review of durability properties. Resour. Conserv. Recycl. 57, 30–35 (2011)

    Article  Google Scholar 

  31. A.M. Rashad, H.E.-D.H. Seleem, A.F. Shaheen, Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. Int. J. Concr. Struct. Mater. 8, 69–81 (2014)

    Article  CAS  Google Scholar 

  32. A.M. Rashad, Potential use of silica fume coupled with slag in HVFA concrete exposed to elevated temperatures. J. Mater. Civ. Eng. 27(11), 04015019 (2015)

    Article  Google Scholar 

  33. A.M. Rashad, An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads. J. Clean. Prod. 87, 735–744 (2015)

    Article  CAS  Google Scholar 

  34. J.R. Liew, M.-X. Xiong, B.-L. Lai, Design of Steel-Concrete Composite Structures Using High-Strength Materials (Woodhead Publishing, 2021)

    Google Scholar 

  35. X. Dai, S. Aydın, M.Y. Yardımcı, K. Lesage, G. De Schutter, Rheology and microstructure of alkali-activated slag cements produced with silica fume activator. Cem. Concr. Compos. 125, 104303 (2022)

    Article  CAS  Google Scholar 

  36. A. Wetzel, B. Middendorf, Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 100, 53–59 (2019)

    Article  CAS  Google Scholar 

  37. C.S. Thunuguntla, T.G. Rao, Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Constr. Build. Mater. 193, 173–188 (2018)

    Article  CAS  Google Scholar 

  38. J.I. Escalante-Garcia, V.M. Palacios-Villanueva, A.V. Gorokhovsky, G. Mendoza-Suárez, A.F. Fuentes, Characteristics of a NaOH-activated blast furnace slag blended with a fine particle silica waste. J. Am. Ceram. Soc. 85(7), 1788–1792 (2002)

    Article  CAS  Google Scholar 

  39. Y. Zhu, M.A. Longhi, A. Wang, D. Hou, H. Wang, Z. Zhang, Alkali leaching features of 3-year-old alkali activated fly ash-slag-silica fume: for a better understanding of stability. Compos. B Eng. 230, 109469 (2022)

    Article  CAS  Google Scholar 

  40. Y. Liu, C. Shi, Z. Zhang, N. Li, D. Shi, Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. Cem. Concr. Compos. 12, 103665 (2020)

    Google Scholar 

  41. A. Saludung, T. Azeyanagi, Y. Ogawa, K. Kawai, Effect of silica fume on efflorescence formation and alkali leaching of alkali-activated slag. J. Clean. Prod. 315, 128210 (2021)

    Article  CAS  Google Scholar 

  42. V.R. Živica, Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 28(1), 21–25 (2006)

    Google Scholar 

  43. Z. Zhang, L. Li, X. Ma, H. Wang, Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr. Build. Mater. 113, 237–245 (2016)

    Article  CAS  Google Scholar 

  44. P. Cong, L. Mei, Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr. Build. Mater. 275, 122171 (2021)

    Article  CAS  Google Scholar 

  45. H.E. Elyamany, M. Abd Elmoaty, A.M. Elshaboury, Setting time and 7-day strength of geopolymer mortar with various binders. Constr. Build. Mater. 187, 974–983 (2018)

    Google Scholar 

  46. H. Alanazi, J. Hu, Y.-R. Kim, Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Constr. Build. Mater. 197, 747–756 (2019)

    Article  CAS  Google Scholar 

  47. P. Duan, C. Yan, W. Zhou, Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem. Concr. Compos. 78, 108–119 (2017)

    Article  CAS  Google Scholar 

  48. F. Okoye, J. Durgaprasad, N. Singh, Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram. Int. 42(2), 3000–3006 (2016)

    Article  CAS  Google Scholar 

  49. F. Wang, X. Sun, Z. Tao, Z. Pan, Effect of silica fume on compressive strength of ultra-high-performance concrete made of calcium aluminate cement/fly ash based geopolymer. J. Build. Eng., 105398 (2022)

    Google Scholar 

  50. H.A. Alcamand, P.H. Borges, F.A. Silva, A.C.C. Trindade, The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars. Ceram. Int. 44(5), 5037–5044 (2018)

    Article  CAS  Google Scholar 

  51. U. Javed, F.U.A. Shaikh, P.K. Sarker, Microstructural investigation of lithium slag geopolymer pastes containing silica fume and fly ash as additive chemical modifiers. Cem. Concr. Compos. 134, 104736 (2022)

    Article  CAS  Google Scholar 

  52. H.E.D.H. Seleem, A.M. Rashad, T. Elsokary, Effect of elevated temperature on physico-mechanical properties of blended cement concrete. Constr. Build. Mater. 25(2), 1009–1017 (2011)

    Article  Google Scholar 

  53. H.E.-D.H. Seleem, A.M. Rashad, B.A. El-Sabbagh, Durability and strength evaluation of high-performance concrete in marine structures. Constr. Build. Mater. 24(6), 878–884 (2010)

    Article  Google Scholar 

  54. M. Morsy, S. Shebl, A. Rashad, Effect of fire on microstructure and mechanical properties of blended cement pastes containing metakaolin and silica fume. Asian J. Civ. Eng. Build. Hous. 9, 93–105 (2008)

    Google Scholar 

  55. M. Morsy, A. Rashad, S. Shebl, Effect of elevated temperature on compressive strength of blended cement mortar. Build. Res. J. 56(2–3), 173–185 (2008)

    Google Scholar 

  56. X. Liu, C. Hu, L. Chu, Microstructure, compressive strength and sound insulation property of fly ash-based geopolymeric foams with silica fume as foaming agent. Materials 13(14), 3215 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Rashad .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashad, A.M. (2023). Introduction. In: Silica Fume in Geopolymers . SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-33219-7_1

Download citation

Publish with us

Policies and ethics