Skip to main content

Abstract

Upon heating, thermal pressurization of the fluid in a porous media may occur according to the poromechanical boundary conditions. This pressure build-up may exceed material strength leading to explosive spalling. Thermal pressurization is a mechanism evoked to explain fire spalling of concrete and is also relevant to applications such as well cement lining in petroleum engineering and nuclear waste disposal structures in which the material is subject to significant temperature changes. The contribution of water in C-S-H gel and interlayer pores to thermal pressurization is yet poorly understood. In this work, we study the evolution of the pressure in C-S-H for different pore sizes (micro-and mesopores) as a function of temperature in undrained and drained conditions using molecular simulations. For the drained case, we consider two different poro-mechanical conditions, the first one at 100% relative humidity (liquid saturated system), and the second one at a constant vapor pressure equal to 0.1 MPa. By analyzing the confining pressure, we show how confinement affects the pressure buildup in the three different poromechanical conditions. We also study water desorption in C-S-H interlayer pores and how confinement affects the liquid-gas water phase transition. We finally compare our model with other available data in the literature. Our collected data shows the importance of nanoscale processes to predict and understand thermal pressurization in cement-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bu, Y., Chang, Z., Du, J., Liu, D.: Experimental study on the thermal expansion property and mechanical performance of oil well cement with carbonaceous admixtures. RSC Adv. 7(46), 29240–29254 (2017)

    Article  Google Scholar 

  2. Poyet, S., Charles, S.: Temperature dependence of the sorption isotherms of cement-based materials: heat of sorption and Clausius-Clapeyron formula. Cem. Concr. Res. 39(11), 1060–1067 (2009)

    Article  Google Scholar 

  3. Bažant, Z.P., Kaplan, M.F.: Concrete at High Temperatures: Material Properties and Mathematical Models. Longman, Harlow, Essex (1996)

    Google Scholar 

  4. Kunhi Mohamed, A., Parker, S.C., Bowen, P., Galmarini, S.: An atomistic building block description of C-S-H - towards a realistic C-S-H model. Cem. Concr. Res. 107, 221–235 (2018)

    Article  Google Scholar 

  5. Cygan, R.T., Liang, J.-J., Kalinichev, A.G.: Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108(4), 1255–1266 (2004)

    Article  Google Scholar 

  6. Berendsen, H.J.C., Grigera, J.R.: The missing term in effective pair potentials. J. Phys. Chem. 91(24), 6269–6271 (1987)

    Article  Google Scholar 

  7. Honorio, T., Masara, F., Benboudjema, F.: Heat capacity, isothermal compressibility, isosteric heat of adsorption and thermal expansion of water confined in C-S-H. Cem. Concr. Res. 6, 100015 (2021)

    Google Scholar 

  8. Masara, F., Honorio, T., Benboudjema, F.: Sorption in C-S-H at the molecular level: disjoining pressures, effective interactions, hysteresis, and cavitation. Cem. Concr. Res. 164, 107047 (2023)

    Article  Google Scholar 

  9. Fugel, M., Weiss, V.C.: A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models. J. Chem. Phys. 146(6), 064505 (2017)

    Article  Google Scholar 

  10. Alejandre, J., Tildesley, D.J., Chapela, G.A.: Molecular dynamics simulation of the rthobaric densities and surface tension of water. J. Chem. Phys. 102(11), 4574–4583 (1995)

    Article  Google Scholar 

  11. Guissani, Y., Guillot, B.: A computer simulation study of the liquid–vapor coexistence curve of water. J. Chem. Phys. 98(10), 8221–8235 (1993)

    Article  Google Scholar 

  12. Boulougouris, G.C., Economou, I.G., Theodorou, D.N.: Engineering a molecular model for water phase equilibrium over a wide temperature range. J. Phys. Chem. B 102(6), 1029–1035 (1998)

    Article  Google Scholar 

  13. Perry, R.H., Green, D.W.: Perry’s Chemical Engineers’ Handbook. McGraw-Hill, New York, USA (1984)

    Google Scholar 

  14. Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2018)

    Google Scholar 

  15. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  16. Abdolhosseini Qomi, M.J., Brochard, L., Honorio, T., Maruyama, I., Vandamme, M.: Advances in atomistic modeling and understanding of drying shrinkage in cementitious materials. Cem. Concr. Res. 148, 106536 (2021)

    Article  Google Scholar 

  17. Bonnaud, P.A., et al.: Temperature dependence of nanoconfined water properties: application to cementitious materials. J. Phys. Chem. C 120(21), 11465–11480 (2016)

    Article  Google Scholar 

  18. Ghabezloo, S.: Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste. Cem. Concr. Res. 41(5), 520–532 (2011)

    Article  Google Scholar 

  19. Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17(24), 7600–7604 (2001)

    Article  Google Scholar 

  20. Vishnyakov, A., Neimark, A.V.: Monte Carlo simulation test of pore blocking effects. Langmuir 19(8), 3240–3247 (2003)

    Article  Google Scholar 

  21. Bonnaud, P.A., Coasne, B., Pellenq, R.J.-M.: Molecular simulation of water confined in nanoporous silica. J. Phys.: Condens. Matter 22(28), 284110 (2010)

    Google Scholar 

  22. Zhang, Y., Zhou, Q., Ju, J.W., Bauchy, M.: New insights into the mechanism governing the elasticity of calcium silicate hydrate gels exposed to high temperature: a molecular dynamics study. Cem. Concr. Res. 141, 106333 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

We thankfully appreciate the financial support of the French National Research Agency (ANR) via the project THEDESCO (ANR-19-CE22-0004-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Masara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masara, F., Honorio, T., Benboudjema, F. (2023). Is Thermal Pressurization in C-S-H Relevant for Concrete Spalling?. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-031-33211-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33211-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33210-4

  • Online ISBN: 978-3-031-33211-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics