Skip to main content

Abstract

Owing to their high surface-to-volume ratio, concrete pavements and slabs are more prone to shrinkage, leading to premature cracking and, as a result, loss of serviceability. Capillary pressure in concrete, identified as the main contributor to shrinkage, needs to be frequently monitored to evaluate the shrinkage behaviour of concrete. However, capillary pressure measurement is currently limited to 100 kPa, covering only the initial few hours of age due to the low capacity of existing capillary pressure sensors. This results in very limited record of capillary pressure during the processes occurring within concrete after casting and has prevented a better understanding of the influence of capillary pressure on concrete durability. In this study, high capacity tensiometers (HCTs) were used for the first time to investigate the evolution of capillary pressure in early age concrete over longer periods and at higher capillary pressure values. The results showed that HCTs can quantify the evolution of capillary pressure up to 2000 kPa, a twenty fold increase in comparison to existing methods. This new transformative technology is a major step forward in concrete research and can provide new insights into the shrinkage behaviour of early age concrete. Furthermore, this novel technique can be used in situ in construction projects to monitor the real-time development of capillary pressure of concrete at an early age, aiding practitioners in the decision-making for the employment of effective mitigation strategies to reduce shrinkage and, in turn, increase the durability of infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neville, A.M.: Properties of Concrete. Longman, London (1995)

    Google Scholar 

  2. Combrinck, R., Boshoff, W.P.: Typical plastic shrinkage cracking behaviour of concrete. Mag. Concr. Res. 65(8), 486–493 (2013)

    Article  Google Scholar 

  3. Passuello, A., Moriconi, G., Shah, S.P.: Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem. Concr. Compos. 31(10), 699–704 (2009)

    Article  Google Scholar 

  4. Otieno, M., Alexander, M., Beushausen, H.-D.: Corrosion in cracked and uncracked concrete–influence of crack width, concrete quality and crack reopening. Mag. Concr. Res. 62(6), 393–404 (2010)

    Article  Google Scholar 

  5. Boshoff, W.P., Combrinck, R.: Modelling the severity of plastic shrinkage cracking in concrete. Cem. Concr. Res. 48, 34–39 (2013)

    Article  Google Scholar 

  6. Goudie, A.S.: Dust storms and human health. In: Akhtar, R. (ed.) Extreme Weather Events and Human Health, pp. 13–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23773-8_2

    Chapter  Google Scholar 

  7. Wittmann, F.: On the action of capillary pressure in fresh concrete. Cem. Concr. Res. 6(1), 49–56 (1976)

    Article  Google Scholar 

  8. Radocea, A.: A study on the mechanism of plastic shrinkage of cement-based materials. Chalmers University of Technology (1992)

    Google Scholar 

  9. Slowik, V., Schmidt, M., Fritzsch, R.: Capillary pressure in fresh cement-based materials and identification of the air entry value. Cem. Concr. Compos. 30(7), 557–565 (2008)

    Article  Google Scholar 

  10. Ghourchian, S., Butler, M., Krüger, M., Mechtcherine, V.: Modelling the development of capillary pressure in freshly 3D-printed concrete elements. Cem. Concr. Res. 145, 106457 (2021)

    Article  Google Scholar 

  11. Kayondo, M., Combrinck, R., Boshoff, W.: State-of-the-art review on plastic cracking of concrete. Constr. Build. Mater. 225, 886–899 (2019)

    Article  Google Scholar 

  12. Combrinck, R., Steyl, L., Boshoff, W.P.: Interaction between settlement and shrinkage cracking in plastic concrete. Constr. Build. Mater. 185, 1–11 (2018)

    Article  Google Scholar 

  13. Sayahi, F., Emborg, M., Hedlund, H., Cwirzen, A.: Plastic shrinkage cracking of self-compacting concrete: influence of capillary pressure and dormant period. Nord. Concr. Res. 60(1), 67–88 (2019)

    Article  Google Scholar 

  14. Combrinck, R.: Cracking of plastic concrete in slab-like elements. Stellenbosch University, Stellenbosch (2016)

    Google Scholar 

  15. Slowik, V., Hübner, T., Schmidt, M., Villmann, B.: Simulation of capillary shrinkage cracking in cement-like materials. Cem. Concr. Compos. 31(7), 461–469 (2009)

    Article  Google Scholar 

  16. Sayahi, F., Emborg, M., Hedlund, H., Cwirzen, A., Stelmarczyk, M.: The severity of plastic shrinkage cracking in concrete: a new model. Mag. Concr. Res. 73(6), 315–324 (2021)

    Article  Google Scholar 

  17. Ghourchian, S., Wyrzykowski, M., Lura, P.: A poromechanics model for plastic shrinkage of fresh cementitious materials. Cem. Concr. Res. 109, 120–132 (2018)

    Article  Google Scholar 

  18. Slowik, V., Schmidt, M.: Early age cracking and capillary pressure controlled concrete curing. Adv. Cem.-Based Mater. 126, 229–234 (2010)

    Google Scholar 

  19. Sayahi, F., Emborg, M., Hedlund, H., Cwirzen, A.: Effect of admixtures on mechanism of plastic shrinkage cracking in self-consolidating concrete. ACI Mater. J. 117(5), 51–59 (2020)

    Google Scholar 

  20. Bagheri, A., Jamali, A., Gorgani-Firoozjah, M., Zanganeh, H.: Comparison of the performance of macro-polymeric fibers and steel fibers in controlling drying shrinkage cracks of concrete. Int. J. Struct. Civ. Eng. Res. 7(4), 302–308 (2018)

    Google Scholar 

  21. Bagheri, A., Jamali, A., Pourmir, M., Zanganeh, H.: The influence of curing time on restrained shrinkage cracking of concrete with shrinkage reducing admixture. Adv. Civ. Eng. Mater. 8(1), 596–610 (2019)

    Google Scholar 

  22. Bagheri, A., Jamali, A., Pourmir, M., Zanganeh, H.: The effect of curing duration on restrained shrinkage cracking of concrete containing macro polymeric fibers. In: Kanavaris, F., Benboudjema, F., Azenha, M. (eds.) CRC 2021. RB, vol. 31, pp. 175–186. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72921-9_15

    Chapter  Google Scholar 

  23. Sayahi, F., Emborg, M., Hedlund, H., Cwirzen, A.: Effect of steel fibres extracted from recycled tyres on plastic shrinkage cracking in self-compacting concrete. Mag. Concr. Res. 73(24), 1270–1282 (2021)

    Article  Google Scholar 

  24. Jamali, A., Mendes, J., Nagaratnam, B., Lim, M.: A new four stage model of capillary pressure in early age concrete: insights from high capacity tensiometers. Cem. Concr. Res. 161, 106955 (2022)

    Article  Google Scholar 

  25. Li, Y., Li, J.: Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete. Constr. Build. Mater. 53, 511–516 (2014)

    Article  Google Scholar 

  26. Huang, L., Hua, J., Kang, M., Zhou, F., Luo, Q.: Capillary tension theory for predicting shrinkage of concrete restrained by reinforcement bar in early age. Constr. Build. Mater. 210, 63–70 (2019)

    Article  Google Scholar 

  27. Zhu, J., Zhang, R., Zhang, Y., He, F.: The fractal characteristics of pore size distribution in cement-based materials and its effect on gas permeability. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  28. Slowik, V., Schmidt, M., Kässler, D., Eiserbeck, M.: Capillary pressure monitoring in plastic concrete for controlling early-age shrinkage cracking. Transp. Res. Rec. 2441(1), 1–5 (2014)

    Article  Google Scholar 

  29. Ridley, A., Burland, J.: A new instrument for the measurement of soil moisture suction. Géotechnique 43(2), 321–324 (1993)

    Article  Google Scholar 

  30. Mendes, J., Buzzi, O.: New insight into cavitation mechanisms in high-capacity tensiometers based on high-speed photography. Can. Geotech. J. 50(5), 550–556 (2013)

    Article  Google Scholar 

  31. Mendes, J., Najdi, A., Encalada, D., Prat, P.C., Ledesma, A.: Towards the development on new high capacity tensiometers capable of measuring soil matric suction beyond 3 MPa. Can. Geotech. J. 59(9), 1539–1552 (2022)

    Article  Google Scholar 

  32. Mendes, J., Buzzi, O.: Performance of the University of Newcastle high capacity tensiometers. In: Unsaturated Soils: Research & Applications, pp. 1611–1616. CRC Press (2020)

    Google Scholar 

  33. Tarantino, A., Mongiovì, L.: Experimental procedures and cavitation mechanisms in tensiometer measurements. In: Toll, D.G. (ed.) Unsaturated Soil Concepts and Their Application in Geotechnical Practice, pp. 189–210. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9775-3_1

  34. Ponce-Farfán, C., Santillán, D., Toledo, M.Á.: Thermal simulation of rolled concrete dams: influence of the hydration model and the environmental actions on the thermal field. Water 12(3), 858 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Jamali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamali, A., Mendes, J., Nagaratnam, B., Lim, M. (2023). Monitoring of Capillary Pressure Evolution in Young Age Concrete Using High Capacity Tensiometers. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-031-33211-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33211-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33210-4

  • Online ISBN: 978-3-031-33211-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics