Skip to main content

Abstract

The elastic compliance of cementitious materials increases slightly, and their time-dependent “creep” compliance increases significantly with increasing temperature. The present contribution provides quantitative insight into this topic. Thereby, the focus rests on mature cement paste made from Ordinary Portland cement and distilled water. Macroscopic creep experiments were performed, in order to quantify both elastic and creep moduli in the range of temperatures from 20 ℃ to 45 ℃. The experimental results regarding temperature-dependent values of the modulus of elasticity are validated herein using original results from ultrasonics testing. Finally, a multiscale model was used to establish a link to well-known stiffness constants of unhydrated cement clinker, as well as to temperature-dependent elastic and creep stiffness properties of nanoscopic hydrate-gel needles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pichler, B., Hellmich, C.: Upscaling quasi-brittle strength of cement paste and mortar: a multi-scale engineering mechanics model. Cem. Concr. Res. 41(5), 467–476 (2011)

    Article  Google Scholar 

  2. Zaoui, A.: Continuum micromechanics: survey. J. Eng. Mech. 128(8), 808–816 (2002)

    Article  Google Scholar 

  3. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(1226), 376–396 (1957)

    Google Scholar 

  4. Pichler, B., Hellmich, C., Eberhardsteiner, J.: Spherical and acicular representation of hydrates in a micromechanical model for cement paste: prediction of early-age elasticity and strength. Acta Mech. 203(3), 137–162 (2009)

    Article  MATH  Google Scholar 

  5. Binder, E., Königsberger, M., Flores, R.D., Mang, H.A., Hellmich, C., Pichler, B.L.: Thermally activated viscoelasticity of cement paste: minute-long creep tests and micromechanical link to molecular properties. Cem. Concr. Res. 163, 107014 (2023)

    Article  Google Scholar 

  6. Constantinides, G., Ulm, F.J.: The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem. Concr. Res. 34(1), 67–80 (2004)

    Article  Google Scholar 

  7. Pichler, B., et al.: Effect of gel–space ratio and microstructure on strength of hydrating cementitious materials: an engineering micromechanics approach. Cem. Concr. Res. 45, 55–68 (2013)

    Article  Google Scholar 

  8. Pichler, B., et al.: The Counteracting effects of capillary porosity and of unhydrated clinker grains on the macroscopic strength of hydrating cement paste–a multiscale model. In: Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete: A Tribute to Zdeňk P. Bažant, pp. 40–47 (2013)

    Google Scholar 

  9. Sarris, E., Constantinides, G.: Finite element modeling of nanoindentation on C–S–H: effect of pile-up and contact friction. Cem. Concr. Compos. 36, 78–84 (2013)

    Article  Google Scholar 

  10. Königsberger, M., Hlobil, M., Delsaute, B., Staquet, S., Hellmich, C., Pichler, B.: Hydrate failure in ITZ governs concrete strength: a micro-to-macro validated engineering mechanics model. Cem. Concr. Res. 103, 77–94 (2018)

    Article  Google Scholar 

  11. Königsberger, M., Pichler, B., Hellmich, C.: Micromechanics of ITZ–aggregate interaction in concrete Part I: stress concentration. J. Am. Ceram. Soc. 97(2), 535–542 (2014)

    Article  Google Scholar 

  12. Königsberger, M., Pichler, B., Hellmich, C.: Micromechanics of ITZ-aggregate interaction in concrete Part II: strength upscaling. J. Am. Ceram. Soc. 97(2), 543–551 (2014)

    Article  Google Scholar 

  13. Königsberger, M., Irfan-ul-Hassan, M., Pichler, B., Hellmich, C.: Downscaling based identification of nonaging power-law creep of cement hydrates. J. Eng. Mech. 142(12), 04016106 (2016)

    Article  Google Scholar 

  14. Irfan-ul-Hassan, M., Pichler, B., Reihsner, R., Hellmich, C.: Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasi-static tests. Cem. Concr. Res. 82, 36–49 (2016)

    Article  Google Scholar 

  15. Tamtsia, B.T., Beaudoin, J.J.: Basic creep of hardened cement paste a re-examination of the role of water. Cem. Concr. Res. 30(9), 1465–1475 (2000)

    Article  Google Scholar 

  16. Irfan-ul-Hassan, M., Königsberger, M., Reihsner, R., Hellmich, C., Pichler, B.: How water-aggregate interactions affect concrete creep: multiscale analysis. J. Nanomech. Micromech. 7(4), 04017019 (2017)

    Article  Google Scholar 

  17. Wang, X.F., et al.: Computational study of the nanoscale mechanical properties of CSH composites under different temperatures. Comput. Mater. Sci. 146, 42–53 (2018)

    Article  Google Scholar 

  18. Xin, H., Lin, W., Fu, J., Li, W., Wang, Z.: Temperature effects on tensile and compressive mechanical behaviors of CSH structure via atomic simulation. J. Nanomater. (2017)

    Google Scholar 

  19. Zaragoza, A., et al.: Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity. Phys. Chem. Chem. Phys. 21(25), 13653–13667 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard L. A. Pichler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binder, E., Königsberger, M., Flores, R.D., Mang, H.A., Hellmich, C., Pichler, B.L.A. (2023). Temperature-Dependent Behavior of Mature Cement Paste: Creep Testing and Multiscale Modeling. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-031-33211-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33211-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33210-4

  • Online ISBN: 978-3-031-33211-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics