Skip to main content

Direct Aqueous Mineralization of Industrial Waste for the Production of Carbonated Supplementary Cementitious Materials

  • Conference paper
  • First Online:
International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures (SynerCrete 2023)

Abstract

In the steelmaking process, electric arc furnace (EAF) is regarded as a green production route, as it essentially uses ferrous scraps instead of virgin raw materials. In addition, the alkaline composition of the slag derived from the EAF production makes it suitable for carbonation treatment, and specifically for the permanent storage of CO2 through the implementation of the mineralization process. Therefore, in this study, EAF slag carbonation is performed in a slurry configuration, at room temperature and ambient pressure, in order to assess the CO2 storage potential under minimized energy consumption conditions. Specifically, the slurry was prepared at a liquid-to-solid ratio of 3; CO2 with a partial pressure of 99.9% was fluxed into the slurry at 25 ℃ under the pressure of 1 bar with a flowrate of 150 L/h, and reaction time of 1 h. Moreover, in order to investigate the reproducibility of the mineralization process, three tests under the same conditions were replicated. The carbonation efficiency was estimated to be around 32%, and the results achieved were compared to previous literature studies. This research confirms that direct aqueous carbonation is a valuable method for inducing mineralization in powdered materials. Future investigations will be aimed at assessing the potential of the carbonated slag to act as supplementary cementitious material by partially substituting clinker binders in cement-based manufacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEA. Cement. https://www.iea.org/reports/cement. Accessed 03 Oct 2022

  2. Huntzinger, D.N., Gierke, J.S., Sutter, L.L., Kawatra, S.K., Eisele, T.C.: Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater 168(1), 31–37 (2009)

    Article  Google Scholar 

  3. World Steel in Figures 2022 - worldsteel.org. World Steel Association AISBL. https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/. Accessed 03 Oct 2022

  4. Worldsteel Association. WORLD STEEL IN FIGURES 2019. https://worldsteel.org/wp-content/uploads/2019-World-Steel-in-Figures.pdf?x82173. Accessed 04 Oct 2022

  5. EUROSLAG. Statistics 2018. https://www.euroslag.com/wp-content/uploads/2022/04/Statistics-2018.pdf. Accessed 04 Oct 2022

  6. Piemonti, A., Conforti, A., Cominoli, L., Luciano, A., Plizzari, G., Sorlini, S.: Exploring the potential for steel slags valorisation in an industrial symbiosis perspective at meso-scale level. Waste Biomass Valorizat. 1, 1–21 (2022)

    Google Scholar 

  7. European Committee for Standardization. European Standards EN 197-1: 2000 (Amendment A1: 2004): Cement – Part 1: Composition, specifications and conformity criteria for common cements (2004)

    Google Scholar 

  8. Huijgen, W.J.J., Comans, R.N.J.: Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms. Environ. Sci. Technol. 40(8), 2790–2796 (2006)

    Article  Google Scholar 

  9. Huijgen, W.J.J., Witkamp, G.-J., Comans, R.N.J.: Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 39(24), 9676–9682 (2005)

    Article  Google Scholar 

  10. Bobicki, E.R., Liu, Q., Xu, Z., Zeng, H.: Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. Sci. 38(2), 302–320 (2012)

    Article  Google Scholar 

  11. Song, Q., Guo, M.Z., Wang, L., Ling, T.C.: Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resour. Conserv. Recycl. 173, 105740 (2021)

    Article  Google Scholar 

  12. Chang, E.E., Chen, C.H., Chen, Y.H., Pan, S.Y., Chiang, P.C.: Performance evaluation for carbonation of steel-making slags in a slurry reactor. J. Hazard Mater. 186(1), 558–564 (2011)

    Article  Google Scholar 

  13. Baciocchi, R., et al.: Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. J. Hazard. Mater. 283, 302–313 (2015)

    Article  Google Scholar 

  14. Baciocchi, R., et al.: Wet versus slurry carbonation of EAF steel slag †. Greenhouse Gas Sci. Technol. 1, 312–319 (2011)

    Article  Google Scholar 

  15. Steinour, H.H.: Some effects of carbon dioxide on mortars and concrete-discussion. J. Am. Concr. Inst. 30(2), 905–907 (1959)

    Google Scholar 

  16. Huntzinger, D.N., Gierke, J.S., Kawatra, S.K., Eisele, T.C., Sutter, L.L.: Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ. Sci. Technol. 43(6), 1986–1992 (2009)

    Article  Google Scholar 

  17. Humbert, P.S., Castro-Gomes, J.P., Savastano, H.: Clinker-free CO2 cured steel slag based binder: Optimal conditions and potential applications. Constr. Build. Mater. 210, 413–421 (2019)

    Article  Google Scholar 

  18. Xuan, D., Zhan, B., Poon, C.S., Zheng, W.: Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products. J. Hazard. Mater. 312, 65–72 (2016)

    Article  Google Scholar 

  19. Liu, G., et al.: Recycling and utilization of high volume converter steel slag into CO2 activated mortars – The role of slag particle size. Resour. Conserv. Recycl. 160, 104883 (2020)

    Article  Google Scholar 

  20. Mahoutian, M., Shao, Y., Mucci, A., Fournier, B.: Carbonation and hydration behavior of EAF and BOF steel slag binders. Mater. Struct. 48(9), 3075–3085 (2014)

    Article  Google Scholar 

  21. Moon, E.J., Choi, Y.C.: Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation. J. Clean. Prod. 180, 642–654 (2018)

    Article  Google Scholar 

  22. Mo, L., Zhang, F., Deng, M.: Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing. Cem. Concr. Res. 88, 217–226 (2016)

    Article  Google Scholar 

  23. Mahoutian, M., Chaallal, O., Shao, Y.: Pilot production of steel slag masonry blocks. Can. J. Civ. Eng 45(7), 537–546 (2018)

    Article  Google Scholar 

  24. Zhang, D., Ghouleh, Z., Shao, Y.: Review on carbonation curing of cement-based materials. J. CO2 Util 21, 119–131 (2017)

    Google Scholar 

  25. Ševčík, R., Šašek, P., Viani, A.: Physical and nanomechanical properties of the synthetic anhydrous crystalline CaCO3 polymorphs: vaterite, aragonite and calcite. J. Mater. Sci. 53(6), 4022–4033 (2018)

    Article  Google Scholar 

  26. Chang, E.E., et al.: CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J. Hazard. Mater. 195, 107–114 (2011)

    Article  Google Scholar 

  27. Pan, S.Y., Chiang, P.C., Chen, Y.H., Tan, C.S., Chang, E.E.: Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion. Appl. Energy 113, 267–276 (2014)

    Article  Google Scholar 

  28. El Gamal, M., Mohamed, A.-M., Hameedi, S.: Treatment of industrial alkaline solid wastes using carbon dioxide. In: Mateev, M., Nightingale, J. (eds.) Sustainable Development and Social Responsibility—Volume 1. ASTI, pp. 317–323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32922-8_31

    Chapter  Google Scholar 

  29. ben Ghacham, A., Pasquier, L.C., Cecchi, E., Blais, J.F., Mercier, G.: Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation. J. Clean. Prod. 166, 869–878 (2017)

    Google Scholar 

  30. Galan, I., Glasser, F.P., Andrade, C.: Calcium carbonate decomposition. J. Therm. Anal. Calorim. 111(2), 1197–1202 (2013)

    Article  Google Scholar 

  31. Uibu, M., Kuusik, R., Andreas, L., Kirsimäe, K.: The CO2 -binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energy Proc. 4, 925–932 (2011)

    Article  Google Scholar 

  32. Bonenfant, D., et al.: CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind. Eng. Chem. Res. 47(20), 7610–7616 (2008)

    Article  Google Scholar 

  33. Ibrahim, M.H., El-Naas, M.H., Zevenhoven, R., Al-Sobhi, S.A.: Enhanced CO2 capture through reaction with steel-making dust in high salinity water. Int. J. Greenhouse Gas Control 91, 102819 (2019)

    Article  Google Scholar 

  34. Wang, W., Liu, X., Wang, P., Zheng, Y., Wang, M.: Enhancement of CO2 mineralization in Ca2+-/Mg 2+-rich aqueous solutions using insoluble amine. Ind. Eng. Chem. Res. 52, 8028–8033 (2013)

    Article  Google Scholar 

  35. Omale, S.O., Choong, T.S.Y., Abdullah, L.C., Siajam, S.I., Yip, M.W.: Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Heliyon 5(19), e02602 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Palmero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonfante, F., Ferrara, G., Humbert, P., Tulliani, JM., Palmero, P. (2023). Direct Aqueous Mineralization of Industrial Waste for the Production of Carbonated Supplementary Cementitious Materials. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-031-33187-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33187-9_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33186-2

  • Online ISBN: 978-3-031-33187-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics