Skip to main content

Abstract

The mechanical and microstructural properties of carbon nanomaterial reinforced geopolymers are investigated regarding carbon nanomaterial type, carbon nanomaterial content, and curing conditions. For this purpose, three types of carbon nanomaterials (CN) were investigated: pristine carbon nanotubes (P-CNT), functionalized carbon nanotubes (F-CNT) and, pristine carbon nanohorns (CNH). The CN were ultrasonically stirred with potassium silicate and a polycarboxylate-based superplasticizer. The homogeneous mixture was stirred with metakaolin, and cured at 20 ℃ and 60 ℃, respectively, for seven days. The different CN proportions were 0.2%, 0.5%, and 1.0% in weight to the amount of metakaolin. Subsequently, flexural strength and toughness were evaluated. The pore structure and pore size distribution were measured by mercury porosimetry. Oven curing at 60 ℃ increased the flexural strength and toughness of all samples. The addition of all types of CN increased the mechanical properties compared to plain geopolymer. Samples with 0.2% F-CNT, cured at 60 ℃, had the highest flexural strength increase of ~ 140%. The increase in curing temperature had the highest effect on F-CNT doped samples. At 0.2%, cured at 60 ℃, pristine CNT and CNH had approximately the same strength increase (~100%). However, at 0.5%, contrary to P-CNT, the pristine CNH samples had a further strength increase (~112%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidovits, J.: Geopolymer Chemistry and Applications. 5edn., J. Davidovits.–Saint-Quentin, Fr., no. April, p. 680 (2020)

    Google Scholar 

  2. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., Van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007). https://doi.org/10.1007/S10853-006-0637-Z

  3. Pan, Z., Sanjayan, J.G., Rangan, B.V.: Fracture properties of geopolymer paste and concrete. Mag. Concr. Res. 63(10), 763–771 (2011). https://doi.org/10.1680/MACR.2011.63.10.763/ASSET/IMAGES/SMALL/MACR63-763-F10.GIF

  4. Su, Z., Hou, W., Sun, Z.: Recent advances in carbon nanotube-geopolymer composite. Constr. Build. Mater., 252 (2020). https://doi.org/10.1016/J.CONBUILDMAT.2020.118940

  5. Bandow, S., et al.: Evidence for anomalously small charge transfer in doped single-wall carbon nanohorn aggregates with Li, K and Br. Appl. Phys. A  71(5),  561–564 (2000). https://doi.org/10.1007/S003390000681

  6. Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006). https://doi.org/10.1021/CR050569O/ASSET/IMAGES/LARGE/CR050569OF00019.JPEG

  7. Overney, G., Zhong, W., Tománek, D.: Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift für Phys. D Atoms, Mol. Clust., 27(1), 93–96 (1993).  https://doi.org/10.1007/BF01436769

  8. Karfa, P., De, S., Majhi, K.C., Madhuri, R., Sharma, P.K.: Functionalization of carbon nanostructures. Compr. Nanosci. Nanotechnol. 1–5, 123–144 (2019). https://doi.org/10.1016/B978-0-12-803581-8.11225-1

  9. da Luz, G., Gleize, P.J.P., Batiston, E.R., Pelisser, F.: Effect of pristine and functionalized carbon nanotubes on microstructural, rheological, and mechanical behaviors of metakaolin-based geopolymer. Cem. Concr. Compos. 104, 103332 (2019). https://doi.org/10.1016/J.CEMCONCOMP.2019.05.015

  10. Iijima, S., et al.: Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309(3–4), 165–170 (1999). https://doi.org/10.1016/S0009-2614(99)00642-9

  11. Górski, M., et al.: Electrical Properties of the Carbon Nanotube-Reinforced Geopolymer Studied by Impedance Spectroscopy. Materials (Basel) 15(10), 3543 (2022). https://doi.org/10.3390/MA15103543

  12. Azeem, M.,  Saleem, M.A.: A raman spectroscopic study of calcium silicate hydrate (CSH) in the cement matrix with CNTs and oxide additives. J. Spectrosc., 2022 (2022).  https://doi.org/10.1155/2022/2281477

  13. Maho, B., et al.: Mechanical properties and electrical resistivity of multiwall carbon nanotubes incorporated into high calcium fly ash geopolymer. Case Stud. Constr. Mater. 15 (2021).  https://doi.org/10.1016/J.CSCM.2021.E00785

  14. Zhang, C., Khorshidi, H., Najafi, E., Ghasemi, M.: Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: a comprehensive review. J. Clean. Prod. 384, 135390 (2023). https://doi.org/10.1016/J.JCLEPRO.2022.135390

  15. Jittabut, P., Horpibulsuk, S.: Physical and microstructure properties of geopolymer nanocomposite reinforced with carbon nanotubes. Mater. Today Proc. 17, 1682–1692 (2019). https://doi.org/10.1016/J.MATPR.2019.06.199

  16. Vogt, O., Ukrainczyk, N., Ballschmiede, C., Koenders, E.: Reactivity and microstructure of metakaolin based geopolymers: Effect of fly Ash and liquid/solid contents. Materials (Basel) 12(21), 1–21 (2019). https://doi.org/10.3390/MA12213485

  17. Eitan, A., Jiang, K., Dukes, D., Andrews, R.,  Schadler, L.S.: Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites (2003).  https://doi.org/10.1021/cm020975d

  18. Babu, D.J., Herdt, T., Okeil, S., Bruns, M., Staudt, R., Schneider, J.J.: Bud type carbon nanohorns: materials for high pressure CO2 capture and Li-ion storage. J. Mater. Chem. A 4(37), 14267–14275 (2016). https://doi.org/10.1039/C6TA03933B

  19. Khater, H.M., Abd El, H.A.: Characterization of alkali activated geopolymer mortar doped with MWCNT. Constr. Build. Mater. 102, 329–337 (2016). https://doi.org/10.1016/J.CONBUILDMAT.2015.10.121

  20. Abbasi, S.M., Ahmadi, H., Khalaj, G., Ghasemi, B.: Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes. Ceram. Int. 42(14), 15171–15176 (2016). https://doi.org/10.1016/J.CERAMINT.2016.06.080

  21. Saafi, M., et al.: Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Constr. Build. Mater. 49, 46–55 (2013). https://doi.org/10.1016/J.CONBUILDMAT.2013.08.007

  22. (PDF) Flexural and Flexural Toughness of Fiber Reinforced Concrete-American Standard Specifications Review. https://www.researchgate.net/publication/331330530_Flexural_and_Flexural_Toughness_of_Fiber_Reinforced_Concrete-American_Standard_Specifications_Review . (Accessed 25 Jul 2022)

  23. Li, Q., et al.: Effect of curing temperature on high-strength metakaolin-based geopolymer composite (HMGC) with quartz powder and steel fibers. Mater. (Basel, Switzerland),  15(11), 3958 (2022). https://doi.org/10.3390/MA15113958

Download references

Acknowledgments

The authors gratefully appreciate the financial support from the DFG (Deutsche Forschungsgemeinschaft) German national science foundation for the financial support of the NanoGP project ‘Multiscale modeling of advanced nano-reinforced geopolymer/CNTs materials’ under project number 446266595. The authors would also like to acknowledge Dr. Sandeep Yadav for providing the carbon nanohorns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliya Dubyey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubyey, L., Winn, L., Ukrainczyk, N., Koenders, E. (2023). Effect of Carbon Nanomaterials on the Microstructural and Mechanical Properties of Geopolymer Binders. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-031-33187-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33187-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33186-2

  • Online ISBN: 978-3-031-33187-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics