Skip to main content

Abstract

RILEM Technical Committee 279 WMR is dedicated to the Valorization of Waste and Secondary Materials for Roads. Its Task Group 2 investigated Crumb Rubber (CR) as an additive to enhance the performance of bitumen. CR recycled from end-of-life tires (ELTs) was chosen for this investigation because crumb rubber modified bitumen (CRMB) has been used to improve bituminous mixtures performance for fatigue and reflective cracking. The success of these mixtures is due to the CRMB viscosity that allows the use of an increased amount of bitumen compared to conventional mixtures. Because the viscosity of the CRMB is a function of the CR surface, and presently various types of CRs are produced, it is crucial to verify how these materials perform as a bitumen modifier. Interlaboratory experiments were performed on four types of CR, obtained from mechanical grinding, cryogenic process, waterjet pulverization and reacted and activated rubber. Three base, 35/50, 50/70 and 70/100, bitumen were used for the modification. Mechanical and chemical properties of CRMB were investigated. Despite some differences in the non-mechanical tests, i.e., penetration, softening point and viscosity, the results of the mechanical tests (complex shear modulus) suggest that the bitumen penetration grade ultimately dictates CRMB response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piao Z, Mikhailenko P, Kakar MR, Bueno M, Hellweg S, Poulikakos LD (2021) Urban mining for asphalt pavements: a review. J Clean Prod 280:124916. https://doi.org/10.1016/j.jclepro.2020.124916

  2. Poulikakos LD, Papadaskalopoulou C, Hofko B, Gschösser F, Cannone Falchetto A, Bueno M, Arraigada M, Sousa J, Ruiz R, Petit C et al (2017) Harvesting the unexplored potential of European waste materials for road construction. Resour Conserv Recycl 116:32–44. https://doi.org/10.1016/j.resconrec.2016.09.008

    Article  Google Scholar 

  3. Cann G NZ’s tyre mountains keep growing in the absence of recycling scheme. https://www.stuff.co.nz/environment/92515136/millions-of-tyres-becoming-unrecyclable-in-absence-of-recycling-scheme. Accessed 11 July 2022

  4. Tasalloti A, Chiaro G, Murali A, Banasiak L, Palermo A, Granello G (2021) Recycling of end-of-life tires (ELTs) for sustainable geotechnical applications: a New Zealand perspective. Appl Sci 11:7824. https://doi.org/10.3390/app11177824

  5. Afrin H, Huda N, Abbasi R (2021) Study on end-of-life tires (ELTs) recycling strategy and applications. In: IOP conference series: materials science and engineering, vol 1200, p 012009. https://doi.org/10.1088/1757-899x/1200/1/012009

  6. Bianco I, Panepinto D, Zanetti M (2021) End-of-life tyres: comparative life cycle assessment of treatment scenarios. Appl Sci 11:3599. https://doi.org/10.3390/app11083599

    Article  Google Scholar 

  7. Roberts F, Lytton R (1987) FAA mixture design procedure for asphalt-rubber concrete. Transp Res Rec 1115:216–225

    Google Scholar 

  8. Abang Ismawi Hassim DH, Abraham F, Summerscales J, Brown P (2019) The effect of interface morphology in waste tyre rubber powder filled elastomeric matrices on the tear and abrasion resistance. Express Polym Lett 13:248–260. https://doi.org/10.3144/expresspolymlett.2019.21

    Article  Google Scholar 

  9. Abang Ismawi Hassim DH, Abraham F, Summerscales J, Brown P (2018) Fatigue properties and fracture morphology of micronised rubber powder (MRP) from waste tyres in unfilled elastomers. Int J Mater Mech Manuf 6:281–285. https://doi.org/10.18178/ijmmm.2018.6.4.392

  10. Shen J, Amirkhanian S, Xiao F, Tang B (2009) Influence of surface area and size of crumb rubber on high temperature properties of crumb rubber modified binders. Constr Build Mater 23:304–310. https://doi.org/10.1016/j.conbuildmat.2007.12.005

    Article  Google Scholar 

  11. Kedarisetty S, Biligiri KP, Sousa JB (2016) Advanced rheological characterization of reacted and activated rubber (RAR) modified asphalt binders. Constr Build Mater 122:12–22. https://doi.org/10.1016/j.conbuildmat.2016.06.043

    Article  Google Scholar 

  12. Sousa JB, Vorobiev A, Rowe GM, Ishai I (2013) Reacted and activated rubber: elastomeric asphalt extender. Transp Res Rec 2371:32–40. https://doi.org/10.3141/2371-04

    Article  Google Scholar 

  13. Rath P, Meister J, Jahangiri B (2020) Evaluation of engineered crumb rubber (ECR) performance characteristics, including warm-mix equivalence with polymer, draindown prevention, and release enhancement. In: RILEM international symposium on bituminous materials (ISBM Lyon 2020). Springer, Cham

    Google Scholar 

  14. Mashaan NS, Ali AH, Karim MR, Abdelaziz M (2014) A review on using crumb rubber in reinforcement of asphalt pavement. Sci World J 2014:214612. https://doi.org/10.1155/2014/214612

    Article  Google Scholar 

  15. Tefera BY, Tadele K, Geremew A (2018) Evaluation of the effect of rubber modified bitumen on asphalt performance. Am J Civil Eng 6:88–93. https://doi.org/10.11648/j.ajce.20180603.11

  16. Nejad FM, Aghajani P, Modarres A, Firoozifar H (2012) Investigating the properties of crumb rubber modified bitumen using classic and SHRP testing methods. Constr Build Mater 26:481–489. https://doi.org/10.1016/j.conbuildmat.2011.06.048

    Article  Google Scholar 

  17. Navarro FJ, Partal P, Martı́nez-Boza F, Gallegos C (2004) Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens. Fuel 83:2041–2049. https://doi.org/10.1016/j.fuel.2004.04.003

  18. Dantas Neto SA, Farias MM, Pais JC, Pereira PAA, Sousa JB (2006) Influence of crumb rubber and digestion time on the asphalt rubber binders. Road Mater Pavement Des 7:131–148. https://doi.org/10.1080/14680629.2006.9690030

    Article  Google Scholar 

  19. Cong P, Xun P, Xing M, Chen S (2013) Investigation of asphalt binder containing various crumb rubbers and asphalts. Constr Build Mater 40:632–641. https://doi.org/10.1016/j.conbuildmat.2012.11.063

    Article  Google Scholar 

  20. Hınıslıoğlu S, Ağar E (2004) Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Mater Lett 58:267–271. https://doi.org/10.1016/S0167-577X(03)00458-0

    Article  Google Scholar 

  21. Dantas-Neto SA, Farias MM, Pais JC, Pereira PAA (2006) Dense graded hot mixes using asphalt-rubber binders with high rubber contents. Road Mater Pavement Des 7:29–46. https://doi.org/10.1080/14680629.2006.9690025

    Article  Google Scholar 

  22. Oikonomou N, Mavridou S (2009) The use of waste tyre rubber in civil engineering works. In: Khatib JM (ed) Sustainability of construction materials. Woodhead Publishing. https://doi.org/10.1533/9781845695842.213

  23. Sutanto M, Bala N, Al Zaro K, Sunarjono S (2018) Properties of crumb rubber and latex modified asphalt binders using superpave tests. In: MATEC web of conferences, vol 203, p 05007. EDP Sciences. https://doi.org/10.1051/matecconf/201820305007

  24. Khatijah Abu Bakar S, Ezree Abdullah M, Mustafa Kamal M, Abd Rahman R, Buhari R, Putra Jaya R, Sabri S, Abdullahi Ahmad K (2018) The effect of crumb rubber on the physical and rheological properties of modified binder. J Phys Conf 1049:012099. https://doi.org/10.1088/1742-6596/1049/1/012099

    Article  Google Scholar 

  25. Billiter TC, Davison RR, Glover CJ, Bullin JA (1997) Production of asphalt-rubber binders by high-cure conditions. Transp Res Rec 1586:50–56. https://doi.org/10.3141/1586-07

    Article  Google Scholar 

  26. Xiao F, Putman BJ, Amirkhanian SN (2006) Laboratory investigation of dimensional changes of crumb rubber reacting with asphalt binder. In: Proceedings of the asphalt rubber pavement conference, Cathedral City, California, USA, 25–27 Oct 2006

    Google Scholar 

  27. Venudharan V, Biligiri KP, Das NC (2018) Investigations on behavioral characteristics of asphalt binder with crumb rubber modification: rheological and thermo-chemical approach. Constr Build Mater 181:455–464. https://doi.org/10.1016/j.conbuildmat.2018.06.087

    Article  Google Scholar 

  28. Bahia HU, Davis R (1994) Effect of crumb rubber modifiers (CRM) on performance related properties of asphalt binders. J Assoc Asphalt Paving Technol 63:414–449

    Google Scholar 

  29. Liu G, Liang Y, Chen H, Wang H, Komacka J, Gu X (2019) Influence of the chemical composition and the morphology of crumb rubbers on the rheological and self-healing properties of bitumen. Constr Build Mater 210:555–563. https://doi.org/10.1016/j.conbuildmat.2019.03.205

    Article  Google Scholar 

  30. Loderer C, Partl MN, Poulikakos LD (2018) Effect of crumb rubber production technology on performance of modified bitumen. Constr Build Mater 191:1159–1171. https://doi.org/10.1016/j.conbuildmat.2018.10.046

    Article  Google Scholar 

  31. Plemons CD (2013) Evaluation of the effect of crumb rubber properties on the performance of asphalt binder. Master Thesis, Auburn University, Alabama, USA

    Google Scholar 

  32. Li B, Huang W, Tang N, Hu J, Lin P, Guan W, Xiao F, Shan Z (2017) Evolution of components distribution and its effect on low temperature properties of terminal blend rubberized asphalt binder. Constr Build Mater 136:598–608. https://doi.org/10.1016/j.conbuildmat.2017.01.118

    Article  Google Scholar 

  33. Pais J, Lo Presti D, Santos C, Thives L, Pereira P (2019) The effect of prolonged storage time on asphalt rubber binder properties. Constr Build Mater 210:242–255. https://doi.org/10.1016/j.conbuildmat.2019.03.155

    Article  Google Scholar 

  34. Thives LP, Pais JC, Pereira PAA, Trichês G, Amorim SR (2013) Assessment of the digestion time of asphalt rubber binder based on microscopy analysis. Constr Build Mater 47:431–440. https://doi.org/10.1016/j.conbuildmat.2013.05.087

    Article  Google Scholar 

  35. Khalili M, Jadidi K, Karakouzian M, Amirkhanian S (2019) Rheological properties of modified crumb rubber asphalt binder and selecting the best modified binder using AHP method. Case Stud Constr Mater 11:e00276. https://doi.org/10.1016/j.cscm.2019.e00276

    Article  Google Scholar 

  36. Kim HS, Lee SJ, Amirkhanian S (2010) Rheology investigation of crumb rubber modified asphalt binders. KSCE J Civ Eng 14:839–843. https://doi.org/10.1007/s12205-010-1020-9

    Article  Google Scholar 

  37. Mashaan NS, Karim MR (2013) Investigating the rheological properties of crumb rubber modified bitumen and its correlation with temperature susceptibility. Mater Res 16:116–127. https://doi.org/10.1590/S1516-14392012005000166

    Article  Google Scholar 

  38. Xie J, Yang Y, Lv S, Zhang Y, Zhu X, Zheng C (2019) Investigation on rheological properties and storage stability of modified asphalt based on the grafting activation of crumb rubber. Polymers 11:1563. https://doi.org/10.3390/polym11101563

    Article  Google Scholar 

  39. Liu H, Chen Z, Wang W, Wang H, Hao P (2014) Investigation of the rheological modification mechanism of crumb rubber modified asphalt (CRMA) containing TOR additive. Constr Build Mater 67:225–233. https://doi.org/10.1016/j.conbuildmat.2013.11.031

    Article  Google Scholar 

  40. Ng Puga KLN, Williams RC (2016) Low temperature performance of laboratory produced asphalt rubber (AR) mixes containing polyoctenamer. Constr Build Mater 112:1046–1053. https://doi.org/10.1016/j.conbuildmat.2016.03.013

    Article  Google Scholar 

  41. Min KE, Jeong HM (2013) Characterization of air-blown asphalt/trans-polyoctenamer rubber blends. J Ind Eng Chem 19:645–649. https://doi.org/10.1016/j.jiec.2012.09.017

    Article  Google Scholar 

  42. González V, Martínez-Boza FJ, Navarro FJ, Gallegos C, Pérez-Lepe A, Páez A (2010) Thermomechanical properties of bitumen modified with crumb tire rubber and polymeric additives. Fuel Process Technol 91:1033–1039. https://doi.org/10.1016/j.fuproc.2010.03.009

    Article  Google Scholar 

  43. Khodaii A, Mehrara A (2009) Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test. Constr Build Mater 23:2586–2592. https://doi.org/10.1016/j.conbuildmat.2009.02.015

    Article  Google Scholar 

  44. Qian C, Fan W, Ren F, Lv X, Xing B (2019) Influence of polyphosphoric acid (PPA) on properties of crumb rubber (CR) modified asphalt. Constr Build Mater 227:117094. https://doi.org/10.1016/j.conbuildmat.2019.117094

    Article  Google Scholar 

  45. Baldino N, Gabriele D, Rossi CO, Seta L, Lupi FR, Caputo P (2012) Low temperature rheology of polyphosphoric acid (PPA) added bitumen. Constr Build Mater 36:592–596. https://doi.org/10.1016/j.conbuildmat.2012.06.011

    Article  Google Scholar 

  46. EN 1426 (2015) Bitumen and bituminous binders—determination of needle penetration. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  47. EN1427 (2015) Bitumen and bituminous binders—determination of the softening point—ring and Ball method. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  48. ASTM E168 (2016) Standard practices for general techniques of infrared quantitative analysis (FTIR). ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  49. EN14770 (2012) Bitumen and bituminous binders—determination of complex shear modulus and phase angle—dynamic shear rheometer (DSR). European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  50. Liu S, Cao W, Fang J, Shang S (2009) Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt. Constr Build Mater 23:2701–2708. https://doi.org/10.1016/j.conbuildmat.2008.12.009

    Article  Google Scholar 

  51. Airey GD, Rahman MM, Collop AC (2003) Absorption of bitumen into crumb rubber using the basket drainage method. Int J Pavement Eng 4:105–119. https://doi.org/10.1080/1029843032000158879

    Article  Google Scholar 

  52. Rodríguez-Fernández I, Tarpoudi Baheri F, Cavalli MC, Poulikakos LD, Bueno M (2020) Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process. Constr Build Mater 259:119662. https://doi.org/10.1016/j.conbuildmat.2020.119662

    Article  Google Scholar 

  53. Liao MC, Lo TJ (2021) Material characterization and balanced design of asphalt-rubber binders. J Mater Civ Eng 33:04020424. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003504

    Article  Google Scholar 

  54. ASTM D6114M-19 (2019) Standard specification for asphalt-rubber binder. ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  55. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707. https://doi.org/10.1021/ja01619a008

    Article  Google Scholar 

  56. Airey GD (2002) Use of black diagrams to identify inconsistencies in rheological data. Road Mater Pavement Des 3:403–424. https://doi.org/10.1080/14680629.2002.9689933

    Article  Google Scholar 

  57. Lo Presti D (2013) Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr Build Mater 49:863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007

    Article  Google Scholar 

  58. Lo Presti D, Airey G (2013) Tyre rubber-modified bitumens development: the effect of varying processing conditions. Road Mater Pavement Des 14:888–900. https://doi.org/10.1080/14680629.2013.837837

    Article  Google Scholar 

  59. Rodríguez-Alloza AM, Gallego J, Giuliani F (2016) Complex shear modulus and phase angle of crumb rubber modified binders containing organic warm mix asphalt additives. Mater Struct 50:77. https://doi.org/10.1617/s11527-016-0950-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anton Paar for providing the helical spindle for these investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge C. Pais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pais, J.C. et al. (2023). Crumb Rubber Modified Binders. In: Cannone Falchetto, A., Poulikakos, L., Pasquini, E., Wang, D. (eds) Valorisation of Waste and Secondary Materials for Roads. RILEM State-of-the-Art Reports, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-031-33173-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33173-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33172-5

  • Online ISBN: 978-3-031-33173-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics