Skip to main content

Bituminous Binder and Bituminous Mixture Modified with Waste Polyethylene

  • Chapter
  • First Online:
Valorisation of Waste and Secondary Materials for Roads

Abstract

RILEM TC-279 WMR task group TG 1 studied the performance of waste Polyethylene (PE) in bituminous binders and bituminous mixtures. Several laboratories participated in this study following a common protocol. Locally sources aggregates and bituminous binder and same source of waste PE were utilized. The binder experiments showed that at high temperatures, using MSCR tests, PE modified blends had better resistance to permanent deformation in comparison to the non modified binder. Whereas at intermediate temperatures, using the LAS tests, fatigue performance of the PE blends could withstand more loading cycles under low strains; however, it could sustain less loading cycles under high strains due to the increase in brittleness. Dry process was used for the mixture experiments in order to bypass the stability and inhomogeneity experience that was observed at the binder scale. The PE modified mixtures showed improved workability and increased strength. The higher the PE dosage, the higher the ITS increase with respect to the values measured for the control materials (i.e., without any plastic waste) thanks to the improved cohesion of the plastic modified mastic. The stiffness experiments tended to show an improved performance with a lower time dependence and a higher elasticity when plastic was added. The cyclic compression tests demonstrated a reduced creep rate along with a higher creep modulus thanks to the addition of PE; similar conclusions can be drawn from the experimental findings coming from wheel tracking test. Furthermore, acceptable and often improved moisture resistance was observed for PE modified materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission. Waste management hierarchy. https://ec.europa.eu/environment/green-growth/waste-prevention-and-management/index_en.html. Accessed 21 Nov 2021

  2. Lo Presti D (2013) Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr Build Mater 49:863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007

    Article  Google Scholar 

  3. Piao Z, Mikhailenko P, Kakar MR, Bueno M, Hellweg S, Poulikakos LD (2021) Urban mining for asphalt pavements: a review. J Clean Prod 280:124916. https://doi.org/10.1016/j.jclepro.2020.124916

    Article  Google Scholar 

  4. Poulikakos LD, Papadaskalopoulou C, Hofko B, Gschösser F, Cannone Falchetto A, Bueno M, Arraigada M, Sousa J, Ruiz R, Petit C, Loizidou M, Partl MN (2017) Harvesting the unexplored potential of European waste materials for road construction. Resour Conserv Recycl 116:32–44. https://doi.org/10.1016/j.resconrec.2016.09.008

    Article  Google Scholar 

  5. AASHTO T315 (2022) Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR). American Association of State Highway and Transportation Officials

    Google Scholar 

  6. Farrar M, Sui C, Salmans S, Qin Q (2015) Determining the low-temperature rheological properties of asphalt binder using a dynamic shear rheometer (DSR). Technical white paper FP08. No. DTFH61-07-D-00005, Fundamental properties of asphalts and modified asphalts, III

    Google Scholar 

  7. Wang D, Cannone Falchetto A, Alisov A, Schrader J, Riccardi C, Wistuba MP (2019) An alternative experimental method for measuring the low temperature rheological properties of asphalt binder by using 4mm parallel plates on dynamic shear rheometer. Transp Res Rec 2673(3):427–438. https://doi.org/10.1177/036119811983491

    Article  Google Scholar 

  8. Moon KH, Cannone Falchetto A, Wang D, Wistuba MP, Tebaldi G (2017) Low-temperature performance of recycled asphalt mixtures under static and oscillatory loading. Road Mater Pavement Des 18(2):297–314. https://doi.org/10.1080/14680629.2016.1213500

    Article  Google Scholar 

  9. Leaderman H (1943) Elastic and creep properties of filamentous materials and other high polymers. Textile Foundation, Washington

    Google Scholar 

  10. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707. https://doi.org/10.1021/ja01619a008

    Article  Google Scholar 

  11. Porot L, Eduard P (2016) Addressing asphalt binder aging through the viscous to elastic transition. In: Proceedings of the ISAP symposium 2016, Jackson Hole Wyoming, USA

    Google Scholar 

  12. Erkens S, Porot L, Glaser R, Glover C (2016) Review of asphalt (concrete) aging tests in US and Europe. In: The 95th Transportation Research Board annual meeting, Washington D.C, 16-5770

    Google Scholar 

  13. Glover CJ, Davison RR, Domke CH, Ruan Y, Juristyarini P, Knorr DB, Jung SH (2005) Development of a new method for assessing asphalt binder durability with field validation. FHWA/TX-05/1872-2, Federal Highway Administration and Texas Department of Transportation, College Station, TX, 1872, pp 1–334

    Google Scholar 

  14. Rowe GM (2011) Prepared discussion following the Anderson AAPT paper cited previously. In: Association of Asphalt Paving Technologists, vol 80, pp 649–662

    Google Scholar 

  15. Rowe GM (2014) Interrelationships in rheology for asphalt binder specifications. In: Proceedings of the fifty-ninth annual conference of the Canadian technical asphalt association (CTAA), Winnipeg, Manitoba

    Google Scholar 

  16. Cannone Falchetto A, Moon KH, Wang D, Riccardi C (2018) Investigation on the cooling medium effect in the characterization of asphalt binder with the bending beam rheometer (BBR). Can J Civ Eng 45(7):594–604. https://doi.org/10.1139/cjce-2017-0586

    Article  Google Scholar 

  17. AASHTO T313 (2012) Standard method of test for determining the flexural creep stiffness of asphalt binder using the bending beam rheometer (BBR). American Association of State Highway and Transportation Officials

    Google Scholar 

  18. Nasr D, Pakshir AH (2019) Rheology and storage stability of modified binders with waste polymers composites. Road Mater Pavement Des 20(4):773–792. https://doi.org/10.1080/14680629.2017.1417152

    Article  Google Scholar 

  19. Kumar P, Garg R (2011) Rheology of waste plastic fibre-modified bitumen. Int J Pavement Eng 12(5):449–459. https://doi.org/10.1080/10298430903255296

    Article  Google Scholar 

  20. Sadeque M, Patil KA (2013) Rheological properties of recycled low density polyethylene and polypropylene modified bitumen. Int J Civ Eng 2(2):24–26. https://doi.org/10.47893/IJATCE.2013.1076

  21. Singhal M, Yadav Y, Mandal R (2016) Use of modified bituminous binder in highway construction. Int J Innov Res Technol Sci Eng 2:176–382

    Google Scholar 

  22. Hu C, Lin W, Partl M, Wang D, Yu H, Zhang Z (2018) Waste packaging tape as a novel bitumen modifier for hot-mix asphalt. Constr Build Mater 193:23–31. https://doi.org/10.1016/j.conbuildmat.2018.10.170

    Article  Google Scholar 

  23. Tušar M, Kakar MR, Poulikakos LD, Pasquini E, Baliello A, Pasetto M, Porot L, Wang D, Cannone Falchetto A, Dalmazzo D, Lo Presti D, Giancontieri G, Varveri A, Veropalumbo R, Viscione N, Vasconcelos K, Carter A (2022) RILEM TC 279 WMR round robin study on waste polyethylene modified bituminous binders: advantages and challenges. Road Mater Pavement Des 1–29. https://doi.org/10.1080/14680629.2021.2017330

  24. D’Angelo JA (2009) The relationship of the MSCR test to rutting. Road Mater Pavement Des 10:61–80. https://doi.org/10.1080/14680629.2009.9690236

    Article  Google Scholar 

  25. Zhang J, Faruk AN, Karki P, Holleran I, Hu X, Walubita LF (2016) Relating asphalt binder elastic recovery properties to HMA cracking and fracture properties. Constr Build Mater 121:236–245. https://doi.org/10.1016/j.conbuildmat.2016.05.157

    Article  Google Scholar 

  26. Chen S, Che T, Mohseni A, Azari H, Heiden PA, You Z (2021) Preliminary study of modified asphalt binders with thermoplastics: the rheology properties and interfacial adhesion between thermoplastics and asphalt binder. Constr Build Mater 301:124373. https://doi.org/10.1016/j.conbuildmat.2021.124373

    Article  Google Scholar 

  27. Joohari I, Giustozzi F (2022) Oscillatory shear rheometry of hybrid polymer-modified bitumen using multiple stress creep and recovery and linear amplitude sweep tests. Constr Build Mater 315:125791. https://doi.org/10.1016/j.conbuildmat.2021.125791

    Article  Google Scholar 

  28. Delgado-Jojoa MG, Sánchez-Gilede JA, Rondón-Quintana HA, Fernández-Gómez WD, Reyes-Lizcano FA (2018) Influence of four non-conventional additives on the physical, rheological and thermal properties of an asphalt. Ing e Investig 38(2):18–26. https://doi.org/10.15446/ing.investig.v38n2.68638

  29. Nuñez JYM, Domingos MDI, Faxina AL (2014) Susceptibility of low-density polyethylene and polyphosphoric acid-modified asphalt binders to rutting and fatigue cracking. Constr Build Mater 73:509–514. https://doi.org/10.1016/j.conbuildmat.2014.10.002

    Article  Google Scholar 

  30. Zhou HY, Dou HB, Chen XH (2021) Rheological properties of graphene/polyethylene composite modified asphalt binder. Materials 14(14):1–15. https://doi.org/10.3390/ma14143986

    Article  Google Scholar 

  31. ASTM D2872-04 (2004) Standard test method for effect of heat and air on a moving film of asphalt (Rolling Thin-Film Oven Test). ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  32. EN 12607-1 (2014) Bitumen and bituminous binders—determination of the resistance to hardening under influence of heat and air—part 1: RTFOT method

    Google Scholar 

  33. ASTM D6521-08 (2008) Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  34. EN 14769 (2012) Bitumen and bituminous binders—accelerated long-term ageing conditioning by a pressure ageing vessel (PAV). European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  35. Soenen H, Besamusca J, Fischer HR, Poulikakos LD, Planche JP, Das PK et al (2014) Laboratory investigation of bitumen based on round robin DSC and AFM tests. Mater Struct 47(7):1205–1220. https://doi.org/10.1617/s11527-013-0123-4

    Article  Google Scholar 

  36. ISO 11357-1 (2009) Plastics-differential scanning calorimetry, differential scanning calorimetry. International Organization for Standardization

    Google Scholar 

  37. ASTM 1356-08 (2014) Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry. ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  38. ASTM D 3418-21 (2021) Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  39. Masson JF, Polomark GM (2001) Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta 374(2):105–114. https://doi.org/10.1016/S0040-6031(01)00478-6

    Article  Google Scholar 

  40. Petersen JC (1986) Quantitative functional group analysis of asphalts using differential infrared spectrometry and selective chemical reactions–theory and application. Transp Res Rec 1096:1–11

    Google Scholar 

  41. Hofko B, Porot L, Cannone Falchetto A, Poulikakos LD, Huber L, Lu X et al (2018) FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Mater Struct 51(2):1–16. https://doi.org/10.1617/s11527-018-1170-7

    Article  Google Scholar 

  42. Lamontagne J, Dumas P, Mouillet V, Kister J (2001) Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens. Fuel 80(4):483–488. https://doi.org/10.1016/S0016-2361(00)00121-6

  43. Mouillet V, Lamontagne J, Durrieu F, Planche J, Lapalu L (2008) Infrared microscopy investigation of oxidation and phase evolution in bituminous binder modified with polymers. Fuel 87(7):1270–1280. https://doi.org/10.1016/j.fuel.2007.06.029

    Article  Google Scholar 

  44. Porot L, Mouillet V, Margaritis A, Haghshenas H, Elwardany M, Apostolidis P (2022) Fourier-transform infrared analysis and interpretation for bituminous binders. Road Mater Pavement Des 1–22. https://doi.org/10.1080/14680629.2021.2020681

  45. EN 12697-10 (2017) Bituminous mixtures—test methods—part 10: compactability. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  46. EN 12697-23 (2017) Bituminous mixtures—test methods—part 23: determination of the indirect tensile strength of bituminous specimens. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  47. EN 12697-25 (2016) Bituminous mixtures—test methods—part 25: cyclic compression test. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  48. EN 12697-22 (2020) Bituminous mixtures—test methods—part 22: wheel tracking. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  49. Kakar MR, Mikhailenko P, Piao Z, Bueno M, Poulikakos L (2021) Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Constr Build Mater 280:122492. https://doi.org/10.1016/j.conbuildmat.2021.122492

    Article  Google Scholar 

  50. EN 1426 (2015) Bitumen and bituminous binders—determination of needle penetration. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  51. EN 1427 (2015) Bitumen and bituminous binders—determination of the softening point—ring and ball method. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  52. EN 13399 (2017) Bitumen and bituminous binders—determination of storage stability of modified bitumen. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  53. Wang D, Baliello A, Poulikakos LD, Vasconcelos K, Pinheiro G, Kakar MR, Giancontieri G, Pasquini E, Porot L, Tušar M, Riccardi C, Pasetto M, Lo Presti D, Cannone Falchetto A (2022) Rheological properties of asphalt binder modified with waste polyethylene: an interlaboratory research from the RILEM TC WMR. Resour Conserv Recycl 186:106564. https://doi.org/10.1016/j.resconrec.2022.106564

    Article  Google Scholar 

  54. Wang D, Baliello A, Pinheiro G, Poulikakos LD, Tušar M, Vasconcelos K, Kakar MR, Porot L, Pasquini E, Giancontieri G, Riccardi C, Pasetto M, Lo Presti D, Cannone Falchetto A (2022) Rheological behaviors of waste polyethylene modified asphalt binder: statistical analysis of inter-laboratory testing results. J Test Eval 51(4):1–2. https://doi.org/10.1520/JTE20220313

  55. AASHTO TP 70 (2013) Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). American Association of State Highway and Transportation Officials

    Google Scholar 

  56. EN 16659 (2015) Bituminen and bituminous binders—multiple stress creep and recovery test (MSCRT). European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  57. AASTHO TP 101-12 (2012) UL standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. American Association of State and Highway Transportation Officials

    Google Scholar 

  58. Schapery RA, Park SW (1999) Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method. Int J Solids Struct 36(11):1677–1699. https://doi.org/10.1016/S0020-7683(98)00055-9

  59. Johnson C (2010) Estimating asphalt binder fatigue resistance using an accelerated tested method. PhD thesis, University of Wisconsin-Madison, Madison, USA. http://digital.library.wisc.edu/1793/46799

  60. Poulikakos LD, Pasquini E, Tušar M, Hernando D, Wang D, Mikhailenko P, Pasetto M, Baliello A, Stoop J, Wouters L, Cannone Falchetto A, Miljković M, Orešković M, Viscione N, Saboo N, Orozco G, Lachance-Tremblay É, Vaillancourtj M, Kakar MR, Bueche N, Dalmazzo D, Pinheiro G, Vasconcelos K, Moreno Navarro F (2022) RILEM interlaboratory study on the mechanical properties of asphalt mixtures modified with polyethylene waste. J Clean Prod 375:133124. https://doi.org/10.1016/j.jclepro.2022.133124

    Article  Google Scholar 

  61. Piao Z, Bueno M, Poulikakos LD, Hellweg S (2022) Life cycle assessment of rubberized semi-dense asphalt pavements; a hybrid comparative approach. Resour Conserv Recycl 176:105950. https://doi.org/10.1016/j.resconrec.2021.105950

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Tušar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tušar, M. et al. (2023). Bituminous Binder and Bituminous Mixture Modified with Waste Polyethylene. In: Cannone Falchetto, A., Poulikakos, L., Pasquini, E., Wang, D. (eds) Valorisation of Waste and Secondary Materials for Roads. RILEM State-of-the-Art Reports, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-031-33173-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33173-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33172-5

  • Online ISBN: 978-3-031-33173-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics