Skip to main content

Aerodynamic Performance Analysis of Penguin-Inspired Biomimetic Aircraft Wing

  • Conference paper
  • First Online:
Green Approaches in Sustainable Aviation (ISSASARES 2022)

Part of the book series: Sustainable Aviation ((SA))

Included in the following conference series:

  • 87 Accesses

Abstract

Aerodynamic performance of a penguin-inspired biomimetic aircraft wing was numerically evaluated using delayed detached Eddy simulation, where the SST K-ω model was applied as Reynolds-averaged Navier–Stokes (RANS) model. At a Reynolds number of 5 × 105, penguin-inspired biomimetic aircraft wing exhibits the flow separation characteristics after 20 deg angle of attack (AOA). Penguin-inspired biomimetic aircraft wings promise better performance compared to almost all the aerofoils if we only consider the stall effect; as for almost all the baseline aerofoils, the stall occurs at around 10–16 deg AOA. The maximum drag coefficient obtained was 0.35 for 30 deg AOA, the maximum lift to drag ratio was 7.8 at 10 deg AOA, and the aerodynamic efficiency is expected to be maximum at that point. Moreover, compared to baseline NACA0012 aerofoil, for 15, 20, and 25 deg AOA, the penguin-inspired biomimetic aircraft wing offers 30.43%, 65.94%, and 33.16% higher lift to drag ratio, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Re:

Reynolds number

AOA:

Angle of attack

CD:

Coefficient of drag

CL:

Coefficient of lift

RANS:

Reynolds-averaged Navier–Stokes

NURBS:

Non-uniform rational basis spline

CFL:

Courant–Friedrichs–Lewy

References

  • Airfoil Tools. (2022). NACA 4 digit Airfoil database. Available at http://airfoiltools.com/search/index?m%5Bgrp%5D=naca4d&m%5Bsort%5D=1. Accessed 4 Apr 2022.

  • Akbari, M. H., & Price, S. J. (2003). Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method. Journal of Fluids and Structures. Elsevier, 17(6), 855–874.

    Article  Google Scholar 

  • Bearman, P. W., & Owen, J. C. (1998). Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines. Journal of Fluids and Structures. Elsevier, 12(1), 123–130.

    Article  Google Scholar 

  • Cai, C., Liu, S., Zuo, Z., Maeda, T., Kamada, Y., Li, Q. A., & Sato, R. (2019). Experimental and theoretical investigations on the effect of a single leading-edge protuberance on airfoil performance. Physics of Fluids. AIP Publishing LLC, 31(2), 27103.

    Article  Google Scholar 

  • Critzos, C. C., Heyson, H. H., & Boswinkle, R. W., Jr. (1955). Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0 deg to 180 deg. National Aeronautics and Space Administration.

    Google Scholar 

  • Elsayed, K., & Lacor, C. (2011). Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Computers & Fluids. Elsevier, 51(1), 48–59.

    Article  Google Scholar 

  • Huang, R. F., & Lin, C. L. (1995). Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. AIAA Journal, 33(8), 1398–1403.

    Article  Google Scholar 

  • Islam, M. T., Arefin, A. M., Masud, M. H., & Mourshed, M. (2018). The effect of Reynolds number on the performance of a modified NACA 2412 airfoil. In AIP conference proceedings. https://doi.org/10.1063/1.5044325

    Chapter  Google Scholar 

  • Johari, H., Henoch, C., Custodio, D., & Levshin, A. (2007). Effects of leading-edge protuberances on airfoil performance. AIAA Journal, 45(11), 2634–2642.

    Article  Google Scholar 

  • Kowalczuk, Z., & Tatara, M. S. (2021). Analytical ‘steady-state’-based derivation and clarification of the Courant-Friedrichs-Lewy condition for pipe flow. Journal of Natural Gas Science and Engineering. Elsevier, 91, 103953.

    Article  Google Scholar 

  • Levshin, A., Custodio, D., Henoch, C., & Johari, H. (2006). Effects of leading edge protuberances on airfoil performance. In 36th AIAA fluid dynamics conference and exhibit (p. 2868).

    Google Scholar 

  • Malipeddi, A., Mahmoudnejad, N., & Hoffmann, K. (2012). Numerical analysis of effects of leading-edge protuberances on aircraft wing performance. Journal of Aircraft, 49(5), 1336–1344.

    Article  Google Scholar 

  • Masud, M. H., Naim-Ul-Hasan, Arefin, A. M. E., & Joardder, M. U. (2017). Design modification of airfoil by integrating sinusoidal leading edge and dimpled surface. In AIP conference proceedings. https://doi.org/10.1063/1.4984677

    Chapter  Google Scholar 

  • Masud, M. H., La Mantia, M., & Dabnichki, P. (2022). Estimate of Strouhal and Reynolds numbers for swimming penguins. Journal of Avian Biology. Wiley Online Library, 2022(2), e02886.

    Article  Google Scholar 

  • Miklosovic, D. S., Murray, M. M., Howle, L. E., & Fish, F. E. (2004). Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16(5), 39–42. https://doi.org/10.1063/1.1688341

    Article  MATH  Google Scholar 

  • Wang, T., Feng, L.-H., & Li, Z.-Y. (2021). Effect of leading-edge protuberances on unsteady airfoil performance at low Reynolds number. Experiments in Fluids. Springer, 62(10), 1–13.

    Article  Google Scholar 

  • Watts, P., & Fish, F. (2001). The influence of passive, leading edge tubercles on wing performance. In Proceedings of the twelfth international symposium on unmanned untethered submersible technology (UUST). Autonomous Undersea Systems Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadi Hasan Masud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masud, M.H., Dabnichki, P. (2024). Aerodynamic Performance Analysis of Penguin-Inspired Biomimetic Aircraft Wing. In: Karakoc, T.H., Das, R., Ekmekci, I., Dalkiran, A., Ercan, A.H. (eds) Green Approaches in Sustainable Aviation. ISSASARES 2022. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-031-33118-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33118-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33117-6

  • Online ISBN: 978-3-031-33118-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics