Skip to main content

The Omnipresent Role of Technology in Social-Ecological Systems

Ontological Discussion and Updated Integrated Framework

  • Conference paper
  • First Online:
Research Challenges in Information Science: Information Science and the Connected World (RCIS 2023)

Abstract

Technology-driven development is one of the main causes of the triple planetary crises of climate change, biodiversity loss and pollution, yet it is also an important factor in the potential mitigation of and adaptation to these crises. In spite of its omnipresence, technology is often overlooked in the discourses of social and environmental sustainability, while in practice sustainability initiatives often draw criticism for favouring technical solutions or oversimplifying the relationships between society, environment and technology. This article extends our RCIS 2022 publication “Conceptual integration for social-ecological systems: an ontological approach” with an ontological examination of technology in two prominent social-ecological systems paradigms, social-ecological system framework (SESF) and ecosystem services (ESs) cascade. We ground the ontological analysis of technology on analytical and postphenomenlogical philosophical literature and effect several re-designs to the initially proposed integrated framework. The main aim of this work is to provide a clearer and theoretically founded semantics of technology within SESF and ESs to improve knowledge representation and facilitate comparability of results in support of decision-making for sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The paper of Guizzardi at al. [22] refers to agents, for the purpose of this work we consider actor and agent as interchangeable.

References

  1. Adamo, G.: Investigating business process elements: a journey from the field of Business Process Management to ontological analysis, and back. Ph.D. thesis, DIBRIS, Università di Genova, Via Opera Pia, 13 16145 Genova (2020)

    Google Scholar 

  2. Adamo, G., Willis, M.: Conceptual integration for social-ecological systems - an ontological approach. In: Guizzardi, R., Ralyté, J., Franch, X. (eds.) RCIS 2022. LNBIP, vol. 446, pp. 321–337. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05760-1_19

    Chapter  Google Scholar 

  3. Adamo, G., Willis, M.: Technologically mediated practices in sustainability transitions: environmental monitoring and the ocean data buoy. Technol. Forecast. Soc. Chang. 182, 121841 (2022)

    Article  Google Scholar 

  4. Ahlborg, H., Ruiz-Mercado, I., Molander, S., Masera, O.: Bringing technology into social-ecological systems research-motivations for a socio-technical-ecological systems approach. Sustainability 11(7), 2009 (2019)

    Article  Google Scholar 

  5. Anderies, J.M., Janssen, M.A., Ostrom, E.: A framework to analyze the robustness of social-ecological systems from an institutional perspective. Ecol. Soc. 9(1) (2004)

    Google Scholar 

  6. Andersson, B., Guarino, N., Johannesson, P., Livieri, B.: Towards an ontology of value ascription. In: Formal Ontology in Information Systems - Proceedings of the 9th International Conference, FOIS 2016, Annecy, France, 6–9 July 2016. Frontiers in Artificial Intelligence and Applications, vol. 283, pp. 331–344. IOS Press (2016)

    Google Scholar 

  7. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being, vol. 5. Island Press, United States of America (2005)

    Google Scholar 

  8. Balbi, S., et al.: The global environmental agenda urgently needs a semantic web of knowledge. Environ. Evid. 11(1), 1–6 (2022)

    Article  MathSciNet  Google Scholar 

  9. Binder, C.R., Hinkel, J., Bots, P.W., Pahl-Wostl, C.: Comparison of frameworks for analyzing social-ecological systems. Ecol. Soc. 18(4) (2013)

    Google Scholar 

  10. Blanco, G., et al.: Innovation, technology development and transfer. In: IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 2674–2814. Cambridge University Press (2022)

    Google Scholar 

  11. Borgo, S., Vieu, L.: Artefacts in formal ontology. In: Philosophy of Technology and Engineering Sciences, pp. 273–307. Elsevier (2009)

    Google Scholar 

  12. Bottazzi, E., Ferrario, R.: Preliminaries to a DOLCE ontology of organisations. Int. J. Bus. Process. Integr. Manag. 4(4), 225–238 (2009)

    Article  Google Scholar 

  13. Bunting, S.W.: Principles of Sustainable Aquaculture: Promoting Social, Economic and Environmental Resilience. Routledge, Milton Park (2013)

    Book  Google Scholar 

  14. Caracciolo, C., et al.: The agrovoc linked dataset. Semant. Web 4(3), 341–348 (2013)

    Article  Google Scholar 

  15. Díaz, S.M., et al.: The global assessment report on biodiversity and ecosystem services: summary for policy makers. Technical report, IPBES (2019)

    Google Scholar 

  16. FAO: The state of world fisheries and aquaculture 2020. Sustainability in action. Technical report, FAO, Rome (2020)

    Google Scholar 

  17. Feenberg, A.: What is philosophy of technology? In: International Handbook of Research and Development in Technology Education, pp. 159–166. Brill (2009)

    Google Scholar 

  18. Feng, P., Feenberg, A.: Thinking about design: critical theory of technology and the design process. In: Kroes, P., Vermaas, P.E., Light, A., Moore, S.A. (eds.) Philosophy and Design, pp. 105–118. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-6591-0_8

    Chapter  Google Scholar 

  19. Franssen, M., Lokhorst, G.J., van de Poel, I.: Philosophy of Technology. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2022 (2022)

    Google Scholar 

  20. Gangemi, A.: Dolce-lite-plus. Technical report, W3C (2005)

    Google Scholar 

  21. le Gouvello, R., Brugere, C., Simard, F. (eds.): Aquaculture and Nature-based Solutions: Identifying synergies between sustainable development of coastal communities, aquaculture, and marine and coastal conservation. IUCN (2022)

    Google Scholar 

  22. Guizzardi, G., de Almeida Falbo, R., Guizzardi, R.S.: Grounding software domain ontologies in the unified foundational ontology (UFO): the case of the ode software process ontology. In: CIbSE, pp. 127–140. Citeseer (2008)

    Google Scholar 

  23. Haines-Young, R., Potschin, M.B.: Common international classification of ecosystem services (CICES) V5. 1 and guidance on the application of the revised structure (2018)

    Google Scholar 

  24. Hansson, S.O.: Technology and the notion of sustainability. Technol. Soc. 32(4), 274–279 (2010)

    Article  Google Scholar 

  25. Hinkel, J., Bots, P.W., Schlüter, M.: Enhancing the ostrom social-ecological system framework through formalization. Ecol. Soc. 19(3) (2014)

    Google Scholar 

  26. Hinkel, J., Cox, M.E., Schlüter, M., Binder, C.R., Falk, T.: A diagnostic procedure for applying the social-ecological systems framework in diverse cases. Ecol. Soc. 20(1) (2015)

    Google Scholar 

  27. Ihde, D.: The phenomenology of technics. In: Scharff, R.C., Dusek, V. (eds.) Philosophy of Technology: The Technological Condition: An Anthology, pp. 19–24. Wiley, Chichester (2013)

    Google Scholar 

  28. Ihde, D., Malafouris, L.: Homo faber revisited: postphenomenology and material engagement theory. Philos. Technol. 32(2), 195–214 (2019)

    Article  Google Scholar 

  29. IPCC: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York (2022)

    Google Scholar 

  30. Johnson, T.R., et al.: A social-ecological system framework for marine aquaculture research. Sustainability 11(9), 2522 (2019)

    Article  Google Scholar 

  31. Kassel, G.: A formal ontology of artefacts. Appl. Ontol. 5(3–4), 223–246 (2010)

    Article  Google Scholar 

  32. Markard, J., Raven, R., Truffer, B.: Sustainability transitions: an emerging field of research and its prospects. Res. Policy 41(6), 955–967 (2012)

    Article  Google Scholar 

  33. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb deliverable D18 ontology library (final). Technical report, IST Project 2001-33052 WonderWeb: Ontology Infrastructure for the Semantic Web (2003)

    Google Scholar 

  34. McGinnis, M.D., Ostrom, E.: Social-ecological system framework: initial changes and continuing challenges. Ecol. Soc. 19(2) (2014)

    Google Scholar 

  35. Outeiro, L., Villasante, S.: Linking salmon aquaculture synergies and trade-offs on ecosystem services to human wellbeing constituents. Ambio 42, 1022–1036 (2013)

    Article  Google Scholar 

  36. Paredis, E.: Sustainability transitions and the nature of technology. Found. Sci. 16(2), 195–225 (2011)

    Article  Google Scholar 

  37. Partelow, S.: A review of the social-ecological systems framework. Ecol. Soc. 23(4) (2018)

    Google Scholar 

  38. Partelow, S., Senff, P., Buhari, N., Schlüter, A.: Operationalizing the social-ecological systems framework in pond aquaculture. Int. J. Commons 12(1) (2018)

    Google Scholar 

  39. Partelow, S., Winkler, K.J.: Interlinking ecosystem services and ostrom’s framework through orientation in sustainability research. Ecol. Soc. 21(3) (2016)

    Google Scholar 

  40. Potschin, M., Haines-Young, R., et al.: Defining and measuring ecosystem services. In: Routledge Handbook of Ecosystem Services, pp. 25–44 (2016)

    Google Scholar 

  41. Preston, B.: Artifact. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2022 (2022)

    Google Scholar 

  42. Sanfilippo, E.M., et al.: Modeling manufacturing resources: an ontological approach. In: Chiabert, P., Bouras, A., Noël, F., Ríos, J. (eds.) PLM 2018. IAICT, vol. 540, pp. 304–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01614-2_28

    Chapter  Google Scholar 

  43. Schmidt, W., et al.: Design and operation of a low-cost and compact autonomous buoy system for use in coastal aquaculture and water quality monitoring. Aquacult. Eng. 80, 28–36 (2018)

    Article  Google Scholar 

  44. Shukla, P., et al.: IPCC, 2019: climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Technical report, Intergovernmental Panel on Climate Change (IPCC) (2019)

    Google Scholar 

  45. Soto, D., et al.: Applying an ecosystem-based approach to aquaculture: principles, scales and some management measures. In: Building an Ecosystem Approach to Aquaculture. FAO/Universitat de les Illes Balears Expert Workshop, vol. 7, p. e11 (2007)

    Google Scholar 

  46. Thomasson, A.L.: Public artifacts, intentions, and norms. In: Franssen, M., Kroes, P., Reydon, T.A.C., Vermaas, P.E. (eds.) Artefact Kinds. SL, vol. 365, pp. 45–62. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00801-1_4

    Chapter  Google Scholar 

  47. UNFCCC: Climate technology centre and network programme of work 2023-2027. Technical report, UNCTCN (2022)

    Google Scholar 

  48. Verbeek, P.P.: Don ihde: the technological lifeworld. In: American Philosophy of Technology: The Empirical Turn, pp. 119–146 (2001)

    Google Scholar 

  49. Verbeek, P.P.: Toward a theory of technological mediation. In: Technoscience and Postphenomenology: The Manhattan Papers, p. 189 (2015)

    Google Scholar 

  50. Vermaas, P.E., Houkes, W.: Technical functions: a drawbridge between the intentional and structural natures of technical artefacts. Stud. Hist. Philos. Sci. Part A 37(1), 5–18 (2006)

    Article  Google Scholar 

  51. Zwier, J., Blok, V., Lemmens, P.: Phenomenology and the empirical turn: a phenomenological analysis of postphenomenology. Philos. Technol. 29(4), 313–333 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Basque Government IKUR program Supercomputing and Artificial Intelligence (HPC/AI), the María de Maeztu Excellence Unit 2023-2027 (CEX2021-001201-M) funded by MCIN/AEI /10.13039/501100011033, and the RCIS community for their valuable insights that helped develop this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta Adamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adamo, G., Willis, M. (2023). The Omnipresent Role of Technology in Social-Ecological Systems. In: Nurcan, S., Opdahl, A.L., Mouratidis, H., Tsohou, A. (eds) Research Challenges in Information Science: Information Science and the Connected World. RCIS 2023. Lecture Notes in Business Information Processing, vol 476. Springer, Cham. https://doi.org/10.1007/978-3-031-33080-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33080-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33079-7

  • Online ISBN: 978-3-031-33080-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics