Skip to main content

Energy Saving as a Security Threat in LPWAN and Internet of Things

  • Chapter
  • First Online:
Low-Power Wide-Area Networks: Opportunities, Challenges, Risks and Threats

Abstract

The last years have been characterized with a radical and constant evolution of wireless networks, making connected objects ubiquitous and omnipresent in daily life. This has brought a radical shift of wireless networks paradigm, where the objects are characterized with new roles. This paradigm shift interlinked the physical and cyber-physical world, promoting the emergence of Cyber-Physical-Systems (CPS). The utility of devices is not limited to connecting users to the Internet but they play an active role within the cyber-physical world. CPS is a spatially distributed and time-critical extensive network of physical entities with computation and communication capabilities. In this complex cyber-world, different types of communication technologies have been introduced, to account for both short and long distances, with a common point characterizing all these technologies that is represented by the energy and resource capabilities constraints.

In this chapter, we will introduce the main standards proposed for short and long distance wireless connected objects, and will focus on Energy Depletion Attacks (EDA). Based on EDA approaches as proposed in literature for IEEE 802.11 standard, we will analyze how the adopted framework can be easily adapted to perform other attacks in the context of IoT and LPWAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adefemi Alimi, K.O., et al.: A survey on the security of low power wide area networks: threats, challenges, and potential solutions. Sensors (Basel, Switzerland) 20 (2020). https://doi.org/10.3390/s20205800

  2. Ahuja, B., Mishra, D., Bose, R.: Optimal green hybrid attacks in secure IoT. IEEE Wirel. Commun. Lett. 9(4), 457–460 (2020). https://doi.org/10.1109/LWC.2019.2958910

    Article  Google Scholar 

  3. Andres-Maldonado, P., Ameigeiras, P., Prados-Garzon, J., Navarro-Ortiz, J., Lopez-Soler, J.M.: Narrowband IoT data transmission procedures for massive machine-type communications. IEEE Netw. 31(6), 8–15 (2017). https://doi.org/10.1109/MNET.2017.1700081

    Article  Google Scholar 

  4. Barrachina-Muñoz, S., Bellalta, B., Adame, T., Bel, A.: Multi-hop communication in the uplink for LPWANS. Comput. Netw. 123, 153–168 (2017). https://doi.org/10.1016/j.comnet.2017.05.020. https://www.sciencedirect.com/science/article/pii/S1389128617302207

  5. Barrachina-Muñoz, S., Adame, T., Bel, A., Bellalta, B.: Towards energy efficient LPWANS through learning-based multi-hop routing. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 644–649 (2019). https://doi.org/10.1109/WF-IoT.2019.8767193

  6. Basu, D., Gu, T., Mohapatra, P.: Security issues of low power wide area networks in the context of LoRa networks. ArXiv abs/2006.16554 (2020)

    Google Scholar 

  7. Bernard, A., Dridi, A., Marot, M., Afifi, H., Balakrichenan, S.: Embedding ML algorithms onto LPWAN sensors for compressed communications. In: 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1539–1545 (2021). https://doi.org/10.1109/PIMRC50174.2021.9569714

  8. Bhuiyan, M.N., Rahman, M.M., Billah, M.M., Saha, D.: Internet of things (IoT): A review of its enabling technologies in healthcare applications, standards protocols, security, and market opportunities. IEEE Internet Things J. 8(13), 10474–10498 (2021). https://doi.org/10.1109/JIOT.2021.3062630

    Article  Google Scholar 

  9. Bout, E., Loscri, V., Gallais, A.: Harpagon: an energy management framework for attacks in IoT networks. IEEE Internet Things J., 1 (2022). https://doi.org/10.1109/JIOT.2022.3172849

  10. Cao, X., Shila, D.M., Cheng, Y., Yang, Z., Zhou, Y., Chen, J.: Ghost-in-zigbee: Energy depletion attack on zigbee-based wireless networks. IEEE Internet Things J. 3(5), 816–829 (2016). https://doi.org/10.1109/JIOT.2016.2516102

    Article  Google Scholar 

  11. Communications, A.: Single-chip 2x2 MIMO MAC/BB/Radio with PCI express interface for 802.11n 2.4 and 5 GHz WLANS. https://datasheetspdf.com/datasheet/AR9280.html

  12. Correia, L.H.A., Macedo, D.F., Silva, D.A.C., dos Santos, A.L., Loureiro, A.A.F., Nogueira, J.M.S.: Transmission power control in MAC protocols for wireless sensor networks. In: Proceedings of the 8th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’05, pp. 282–289. Association for Computing Machinery, New York, NY (2005). https://doi.org/10.1145/1089444.1089494

  13. Feeney, L., Nilsson, M.: Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), vol. 3, pp. 1548–1557 (2001). https://doi.org/10.1109/INFCOM.2001.916651

  14. Galluccio, L., Morabito, G., Palazzo, S.: Analytical evaluation of a tradeoff between energy efficiency and responsiveness of neighbor discovery in self-organizing ad hoc networks. IEEE J. Sel. Areas Commun. 22(7), 1167–1182 (2004). https://doi.org/10.1109/JSAC.2004.829336

    Article  Google Scholar 

  15. Hernandez, D.M., Peralta, G., Manero, L., Gomez, R., Bilbao, J., Zubia, C.: Energy and coverage study of LPWAN schemes for industry 4.0. In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), pp. 1–6 (2017). https://doi.org/10.1109/ECMSM.2017.7945893

  16. Huang, C.Y., Lin, C.W., Cheng, R.G., Yang, S.J., Sheu, S.T.: Experimental evaluation of jamming threat in LoRaWAN. In: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), pp. 1–6 (2019). https://doi.org/10.1109/VTCSpring.2019.8746374

  17. Kartakis, S., Choudhary, B.D., Gluhak, A.D., Lambrinos, L., McCann, J.A.: Demystifying Low-power Wide-area Communications for City IoT Applications. Association for Computing Machinery, New York, NY (2016). https://doi.org/10.1145/2980159.2980162

  18. López, N., Azurdia-Meza, C., Valencia, C., Montejo-Sánchez, S.: On the performance of 6loWPAN using TSCH/Orchestra mode against a jamming attack. In: 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1–5 (2019). https://doi.org/10.1109/CHILECON47746.2019.8988035

  19. Loscri, V.: An analytical evaluation of a tradeoff between power efficiency and scheduling updating responsiveness in a TDMA paradigm. In: The Fourth International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness & Workshops, QSHINE ’07. Association for Computing Machinery, New York, NY (2007). https://doi.org/10.1145/1577222.1577269

  20. Morin, A., Maman, M., Guizzetti, R., Duda, A.: Comparison of the device lifetime in wireless networks for the Internet of Things. IEEE Access 5, 7097–7114 (2017). https://doi.org/10.1109/ACCESS.2017.2688279

    Article  Google Scholar 

  21. Nguyen, V.L., Lin, P.C., Hwang, R.H.: Energy depletion attacks in low power wireless networks. IEEE Access 7, 51915–51932 (2019). https://doi.org/10.1109/ACCESS.2019.2911424

    Article  Google Scholar 

  22. Odelberg, T.J., Im, J., Wentzloff, D.D.: A 2.1mW -109dBm NB-IoT wake-up receiver. In: 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 235–238 (2021). https://doi.org/10.1109/RFIC51843.2021.9490494

  23. Perković, T., Rudeš, H., Damjanović, S., Nakić, A.: Low-cost implementation of reactive jammer on LoRaWAN network. Electronics 10(7) (2021). https://doi.org/10.3390/electronics10070864. https://www.mdpi.com/2079-9292/10/7/864

  24. Pu, C., Lim, S., Jung, B., Chae, J.: Eyes: mitigating forwarding misbehavior in energy harvesting motivated networks. Comput. Commun. 124, 17–30 (2018). https://doi.org/10.1016/j.comcom.2018.04.007. https://www.sciencedirect.com/science/article/pii/S0140366416306661

  25. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low power wide area networks: an overview. IEEE Commun. Surv. Tutorials 19(2), 855–873 (2017). https://doi.org/10.1109/COMST.2017.2652320

    Article  Google Scholar 

  26. Sandoval, R.M., Garcia-Sanchez, A.J., Garcia-Haro, J., Chen, T.M.: Optimal policy derivation for transmission duty-cycle constrained LPWAN. IEEE Internet Things J. 5(4), 3114–3125 (2018). https://doi.org/10.1109/JIOT.2018.2833289

    Article  Google Scholar 

  27. Seo, J.B., Jung, B.C., Jin, H.: Modeling and online adaptation of ALOHA for low-power wide-area networks (LPWANS). IEEE Internet Things J. 8(20), 15608–15619 (2021). https://doi.org/10.1109/JIOT.2021.3073237

    Article  Google Scholar 

  28. Torres, N., Pinto, P., Lopes, S.: Security vulnerabilities in LPWANS: an attack vector analysis for the iot ecosystem. Appl. Sci. 11 (2021). https://doi.org/10.3390/app11073176

  29. Verma, A., Ranga, V.: Mitigation of DIS flooding attacks in RPL-based 6LoWPAN networks. Trans. Emerg. Telecommun. Technol. 31(2), e3802 (2020). https://doi.org/10.1002/ett.3802. https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3802. E3802 ett.3802

  30. Yakin, N., Zhitkov, M., Chernikov, A., Pepelyaev, P.: Security threats and service degradation detection in LoRaWAN networks. In: 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), pp. 0455–0458 (2021). https://doi.org/10.1109/USBEREIT51232.2021.9455123

  31. Yang, Z., Cheng, P., Chen, J.: LearJam: an energy-efficient learning-based jamming attack against low-duty-cycle networks. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, pp. 354–362 (2014). https://doi.org/10.1109/MASS.2014.17

  32. Yang, X., Karampatzakis, E., Doerr, C., Kuipers, F.: Security vulnerabilities in LoRaWAN. In: 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 129–140 (2018). https://doi.org/10.1109/IoTDI.2018.00022

  33. Zaraket, C., Papageorgas, P., Aillerie, M., Agavanakis, K., Salame, C.: Cyber security vulnerabilities of smart metering based on LPWAN wireless communication technologies. In: Paper Presented at TMREES20, Technologies and Materials for Renewable Energy, Environment and Sustainability, Jun 2020, Athens, Greece (2020)

    Google Scholar 

  34. Zikria, Y.B., Kim, S.W., Hahm, O., Afzal, M.K., Aalsalem, M.Y.: Internet of things (IoT) operating systems management: opportunities, challenges, and solution. Sensors 19(8) (2019). https://doi.org/10.3390/s19081793. https://www.mdpi.com/1424-8220/19/8/1793

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Vegni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bout, E., Gallais, A., Loscrí, V., Vegni, A.M. (2023). Energy Saving as a Security Threat in LPWAN and Internet of Things. In: Butun, I., Akyildiz, I.F. (eds) Low-Power Wide-Area Networks: Opportunities, Challenges, Risks and Threats. Springer, Cham. https://doi.org/10.1007/978-3-031-32935-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32935-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32934-0

  • Online ISBN: 978-3-031-32935-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics