Skip to main content

Considerations and Advances in Huntington’s Disease Clinical Trial Design

  • Chapter
  • First Online:
Biomarkers for Huntington's Disease

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The characterization of the Huntingtin gene in 1993, 10 years after it was the first disease-associated gene to be mapped to a chromosome in humans, brought with it much anticipation that treatment or a cure would soon follow. In 2023, clinical trials for HD are still ongoing, with many structured around therapies that aim to lower Huntingtin mRNA or protein levels. Clinical trial design, including the appropriate selection of a target population, outcome measures, and safety markers, is paramount to the success of such trials. The analysis of biomarkers, including volumetric neuroimaging and cerebrospinal fluid or blood protein levels, is also now an essential requirement for clinical trial design.

This chapter will cover the types and methodologies of current trials investigating Huntingtin-lowering therapies, as well as touch on past and present studies targeting other mechanisms downstream of the Huntingtin mutation. Advances in clinical trial design also include recent efforts to recruit participants who are earlier in their disease progression – prior to the onset of motoric symptom manifestation and a clinical motor diagnosis. In this chapter, we will thus present past and present means of quantifying disease stage and estimated disease progression and discuss the potential for neuroimaging and fluid biomarkers to be incorporated into these measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

Adeno-associated virus

ASO:

Antisense Oligonucleotide

BDNF:

Brain-Derived Neurotrophic Factor

CAP score:

CAG-Age Product score

CNS:

Central Nervous System

CSF:

Cerebrospinal fluid

DCL:

Diagnostic Confidence Level

HTT:

Huntingtin

HD:

Huntington’s disease

HD-ISS:

Huntington’s Disease Integrated Staging System

miRNA:

microRNA

MMSE:

Mini-Mental State Examination

MoCA:

Montreal Cognitive Assessment

NfL:

Neurofilament light

OLE:

Open-Label Extension

PIN score:

Prognostic Index Normed score

RNAi:

RNA interference

shRNA:

short hairpin RNA

siRNA:

short interfering RNA

SDMT:

Symbol Digit Modalities Test

SNP:

Single Nucleotide Polymorphism

TFC:

Total Functional Capacity

TMS:

Total Motor Score

UHDRS:

Unified Huntington’s Disease Rating Scale

References

  • Agustín-Pavón, C., Mielcarek, M., Garriga-Canut, M., & Isalan, M. (2016). Deimmunization for gene therapy: Host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Molecular Neurodegeneration, 11, 1–16.

    Article  Google Scholar 

  • Aylward, E. H. (2007). Change in MRI striatal volumes as a biomarker in preclinical Huntington’s disease. Brain Research Bulletin, 72, 152–158.

    Article  CAS  PubMed  Google Scholar 

  • Besouw, M., Masereeuw, R., Van Den Heuvel, L., & Levtchenko, E. (2013). Cysteamine: An old drug with new potential. Drug Discovery Today, 18, 785–792.

    Article  CAS  PubMed  Google Scholar 

  • Bezprozvanny, I. (2010). The rise and fall of Dimebon. Drug News & Perspectives, 23, 518.

    Article  Google Scholar 

  • Biglan, K. M., Zhang, Y., Long, J. D., Geschwind, M., Kang, G. A., Killoran, A., et al. (2013). Refining the diagnosis of Huntington disease: The PREDICT-HD study. Frontiers in Aging Neuroscience, 5, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boak, L. & Mccolgan, P. Understanding the treatment and post-treatment effects of tominersen in the Phase III GENERATION HD1 study. CHDI Foundation Annual Therapeutics Conference 28th February-3rd March, 2022

    Google Scholar 

  • Brownstein, M. J., Simon, N. G., Long, J. D., Yankey, J., Maibach, H. T., Cudkowicz, M., et al. (2020). Safety and tolerability of srx246, a vasopressin 1a antagonist, in irritable Huntington’s disease patients—a randomized phase 2 clinical trial. Journal of Clinical Medicine, 9, 3682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne, L. M., Rodrigues, F. B., Blennow, K., Durr, A., Leavitt, B. R., Roos, R. A., et al. (2017). Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: A retrospective cohort analysis. The Lancet Neurology., 16, 601–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne, L. M., Rodrigues, F. B., Johnson, E. B., Wijeratne, P. A., De Vita, E., Alexander, D. C., et al. (2018). Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Science Translational Medicine, 10, eaat7108.

    Article  PubMed  Google Scholar 

  • Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: An alternative approach to Huntington’s disease. Nature Reviews Neuroscience, 6, 919–930.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, A. K., Hurley, B., Kerrigan, R., Shu, L., Chin, D. N., Shen, Y., et al. (2018). Discovery of small molecule splicing modulators of survival motor neuron-2 (SMN2) for the treatment of spinal muscular atrophy (SMA). ACS Publications.

    Book  Google Scholar 

  • Drew, C. J., Sharouf, F., Randell, E., Brookes-Howell, L., Smallman, K., Sewell, B., et al. (2021). Protocol for an open label: Phase I trial within a cohort of foetal cell transplants in people with Huntington’s disease. Brain Communications, 3, fcaa230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, E., Fisher, T., Mishra, V., Boise, M., Foster, A., Smith, E., et al. (2022). Clinical evidence that treatment with pepinemab, a novel regulator of neuroinflammation, provides cognitive benefit to patients with Huntington’s and potentially other neurodegenerative diseases (P3–11.007). AAN Enterprises.

    Google Scholar 

  • Ferguson, M. W., Kennedy, C. J., Palpagama, T. H., Waldvogel, H. J., Faull, R. L., & Kwakowsky, A. (2022). Current and possible future therapeutic options for Huntington’s disease. Journal of Central Nervous System Disease, 14, 11795735221092517.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garriga-Canut, M., Agustín-Pavón, C., Herrmann, F., Sánchez, A., Dierssen, M., Fillat, C., et al. (2012). Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proceedings of the National Academy of Sciences, 109, E3136–E3145.

    Article  CAS  Google Scholar 

  • Gray, S. G. (2011). Targeting Huntington’s disease through histone deacetylases. Clinical Epigenetics, 2, 257–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez, A., Corey-Bloom, J., Thomas, E. A., & Desplats, P. (2020). Evaluation of biochemical and epigenetic measures of peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in Huntington’s disease patients. Frontiers in Molecular Neuroscience, 12, 335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hersch, S. (2008). PHEND-HD: A safety, tolerability, and biomarker study of phenylbutyrate in symptomatic HD. Neurotherapeutics, 2, 363.

    Article  Google Scholar 

  • Horizon Investigators of the Huntington Study Group & European Huntington’s Disease Network. (2013). A randomized, double-blind, placebo-controlled study of latrepirdine in patients with mild to moderate Huntington disease. JAMA Neurology, 70, 25–33.

    Article  Google Scholar 

  • Jurcau, A., & Jurcau, M. C. (2022). Therapeutic strategies in Huntington’s disease: From genetic defect to gene therapy. Biomedicine, 10, 1895.

    CAS  Google Scholar 

  • Kacher, R., Lamazière, A., Heck, N., Kappes, V., Mounier, C., Despres, G., et al. (2019). CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease. Brain, 142, 2432–2450.

    Article  PubMed  Google Scholar 

  • Kieburtz, K., Mcdermott, M. P., Voss, T. S., Corey-Bloom, J., Deuel, L. M., Dorsey, E. R., et al. (2010). A randomized, placebo-controlled trial of latrepirdine in Huntington disease. Archives of Neurology, 67, 154–160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingwell, K. (2021). Double setback for ASO trials in Huntington disease. Nature reviews. Drug Discovery.

    Google Scholar 

  • Kuhle, J., Barro, C., Andreasson, U., Derfuss, T., Lindberg, R., Sandelius, Å., et al. (2016). Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clinical Chemistry and Laboratory Medicine (CCLM), 54, 1655–1661.

    Article  CAS  PubMed  Google Scholar 

  • Langbehn, D. R., & Hersch, S. (2020). Clinical outcomes and selection criteria for prodromal Huntington’s disease trials. Movement Disorders.

    Google Scholar 

  • Langbehn, D. R., Hayden, M. R., Paulsen, J. S., & Predict-Hd Investigators. (2010). CAG-repeat length and the age of onset in Huntington disease (HD): A review and validation study of statistical approaches. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153, 397–408.

    Article  Google Scholar 

  • Long, J. D., Paulsen, J. S., & Investigators, P. H. & Group, C. O. T. H. S. (2015). Multivariate prediction of motor diagnosis in Huntington’s disease: 12 years of PREDICT-HD. Movement Disorders, 30, 1664–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, J. D., Langbehn, D. R., Tabrizi, S. J., Landwehrmeyer, B. G., Paulsen, J. S., Warner, J., et al. (2017). Validation of a prognostic index for Huntington’s disease. Movement Disorders, 32, 256–263.

    Article  PubMed  Google Scholar 

  • Long, J. D., Gantman, E. C., Mills, J. A., Vaidya, J. G., Mansbach, A., Tabrizi, S. J., et al. (2023). Applying the Huntington’s disease integrated staging system (HD-ISS) to observational studies. Journal of Huntington’s Disease, 12, 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Macedo, J., Pagani, E., Wenceslau, C., Ferrara, L., & Kerkis, I. (2021). A phase I clinical trial on intravenous administration of immature human dental pulp stem cells (Nestacell HDTM) to Huntington’s disease patients. Cytotherapy, 23, 1.

    Article  Google Scholar 

  • Maibach, H. T., Brownstein, M. J., Hersch, S. M., Anderson, K. E., Itzkowitz, D. E., Damiano, E. M., et al. (2022). The Vasopressin 1a Receptor Antagonist SRX246 Reduces Aggressive Behavior in Huntington’s Disease. Journal of Personalized Medicine, 12, 1561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maucksch, C., Vazey, E. M., Gordon, R. J., & Connor, B. (2013). Stem cell-based therapy for Huntington’s disease. Journal of Cellular Biochemistry, 114, 754–763.

    Article  CAS  PubMed  Google Scholar 

  • Mendell, J. R., Al-Zaidy, S. A., Rodino-Klapac, L. R., Goodspeed, K., Gray, S. J., Kay, C. N., et al. (2021). Current clinical applications of in vivo gene therapy with AAVs. Molecular Therapy, 29, 464–488.

    Article  CAS  PubMed  Google Scholar 

  • Mestre, T. A., & Sampaio, C. (2017). Huntington disease: Linking pathogenesis to the development of experimental therapeutics. Current Neurology and Neuroscience Reports, 17, 1–8.

    Article  Google Scholar 

  • Naia, L., Ly, P., Mota, S. I., Lopes, C., Maranga, C., Coelho, P., et al. (2021). The Sigma-1 receptor mediates pridopidine rescue of mitochondrial function in Huntington Disease models. Neurotherapeutics, 18, 1017–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak, A., Ansar, R., Verma, S. K., Bonifati, D. M., & Kishore, U. (2011). Huntington’s disease: An immune perspective. Neurology Research International, 2011.

    Google Scholar 

  • Parkin, G. M., Corey-Bloom, J., Snell, C., Castleton, J., & Thomas, E. A. (2021). Plasma neurofilament light in Huntington’s disease: A marker for disease onset, but not symptom progression. Parkinsonism & Related Disorders, 87, 32–38.

    Article  CAS  Google Scholar 

  • Parkin, G. M., Corey-Bloom, J., Long, J. D., Snell, C., Smith, H., & Thomas, E. A. (2022). Associations between prognostic index scores and plasma neurofilament light in Huntington’s disease. Parkinsonism & Related Disorders.

    Google Scholar 

  • Parkin, G. M., Thomas, E. A., & Corey-Bloom, J. (2023). Plasma NfL as a prognostic biomarker for enriching HD-ISS stage 1 categorisation: A cross-sectional study. eBioMedicine, 93.

    Google Scholar 

  • Paulsen, J. S., Zimbelman, J. L., Hinton, S. C., Langbehn, D. R., Leveroni, C. L., Benjamin, M. L., et al. (2004). fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s disease. American Journal of Neuroradiology, 25, 1715–1721.

    PubMed  PubMed Central  Google Scholar 

  • Paulsen, J. S., Lourens, S., Kieburtz, K., & Zhang, Y. (2019). Sample enrichment for clinical trials to show delay of onset in huntington disease. Movement Disorders, 34, 274–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penney, J. B., Jr., Vonsattel, J. P., Macdonald, M. E., Gusella, J. F., & Myers, R. H. (1997). CAG repeat number governs the development rate of pathology in Huntington’s disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 41, 689–692.

    Article  Google Scholar 

  • Reilmann, R., Leavitt, B. R., & Ross, C. A. (2014a). Diagnostic criteria for Huntington’s disease based on natural history. Movement Disorders, 29, 1335–1341.

    Article  PubMed  Google Scholar 

  • Reilmann, R., Squitieri, F., Priller, J., Saft, C., Mariotti, C., Suessmuth, S., et al. (2014b). Safety and tolerability of selisistat for the treatment of Huntington’s disease: Results from a randomized., double-blind, placebo-controlled phase II trial (S47. 004). AAN Enterprises.

    Google Scholar 

  • Rodrigues, F. B., Byrne, L. M., Tortelli, R., Johnson, E. B., Wijeratne, P. A., Arridge, M., et al. (2020). Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington’s disease. Science Translational Medicine, 12.

    Google Scholar 

  • Rook, M. E., & Southwell, A. L. (2022). Antisense oligonucleotide therapy: From design to the Huntington disease clinic. BioDrugs, 1–15.

    Google Scholar 

  • Rubinsztein, D. C., & Orr, H. T. (2016). Diminishing return for mechanistic therapeutics with neurodegenerative disease duration? There may be a point in the course of a neurodegenerative condition where therapeutics targeting disease-causing mechanisms are futile. BioEssays, 38, 977–980.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryskamp, D., Wu, J., Geva, M., Kusko, R., Grossman, I., Hayden, M., et al. (2017). The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiology of Disease, 97, 46–59.

    Article  CAS  PubMed  Google Scholar 

  • Sampaio, C., Borowsky, B., & Reilmann, R. (2014). Clinical trials in Huntington’s disease: Interventions in early clinical development and newer methodological approaches. Movement Disorders, 29, 1419–1428.

    Article  PubMed  Google Scholar 

  • Scahill, R. I., Zeun, P., Osborne-Crowley, K., Johnson, E. B., Gregory, S., Parker, C., et al. (2020). Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington’s disease Young Adult Study (HD-YAS): A cross-sectional analysis. The Lancet Neurology., 19, 502–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squitieri, F., Cannella, M., Simonelli, M., Sassone, J., Martino, T., Venditti, E., et al. (2009). Distinct brain volume changes correlating with clinical stage, disease progression rate, mutation size, and age at onset prediction as early biomarkers of brain atrophy in Huntington’s disease. CNS Neuroscience & Therapeutics, 15, 1–11.

    Article  Google Scholar 

  • Stimming, E. F., Sung, V., Testa, C., Kostyk, S., Ross, C. A., Samii, A., et al. (2022). Interim results from cohort 1 of the double-blind, dose-escalation phase I/II clinical trial of AMT-130 (HD-GENETRX-1) for early-stage Huntington’s disease (HD). Neurodegeneration, 1, 2.

    Google Scholar 

  • Süssmuth, S. D., Haider, S., Landwehrmeyer, G. B., Farmer, R., Frost, C., Tripepi, G., et al. (2015). An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with H untington’s disease. British Journal of Clinical Pharmacology, 79, 465–476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabrizi, S. J., Schobel, S., Gantman, E. C., Mansbach, A., Borowsky, B., Konstantinova, P., et al. (2022). A biological classification of Huntington’s disease: The Integrated Staging System. The Lancet Neurology, 21, 632–644.

    Article  PubMed  Google Scholar 

  • Tang, C. C., Feigin, A., Ma, Y., Habeck, C., Paulsen, J. S., Leenders, K. L., et al. (2013). Metabolic network as a progression biomarker of premanifest Huntington’s disease. The Journal of Clinical Investigation, 123, 4076–4088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeitler, B., Froelich, S., Marlen, K., Shivak, D. A., Yu, Q., Li, D., et al. (2019). Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nature Medicine, 25, 1131–1142.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Long, J. D., Mills, J. A., Warner, J. H., Lu, W., Paulsen, J. S., et al. (2011). Indexing disease progression at study entry with individuals at-risk for Huntington disease. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156, 751–763.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia M. Parkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parkin, G.M., Corey-Bloom, J. (2023). Considerations and Advances in Huntington’s Disease Clinical Trial Design. In: Thomas, E.A., Parkin, G.M. (eds) Biomarkers for Huntington's Disease. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-32815-2_17

Download citation

Publish with us

Policies and ethics