Skip to main content

Giving DIAnA More TIMEGuidance for the Design of XAI-Based Medical Decision Support Systems

  • 759 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13873)

Abstract

Future healthcare ecosystems integrating human-centered artificial intelligence (AI) will be indispensable. AI-based healthcare technologies can support diagnosis processes and make healthcare more accessible globally. In this context, we conducted a design science research project intending to introduce design principles for user interfaces (UIs) of explainable AI-based (XAI) medical decision support systems (XAI-based MDSS). We used an archaeological approach to analyze the UI of an existing web-based system in the context of skin lesion classification called DIAnA (Dermatological Images – Analysis and Archiving). One of DIAnA’s unique characteristics is that it should be usable for the stakeholder groups of physicians and patients. We conducted the in-situ analysis with these stakeholders using the think-aloud method and semi-structured interviews. We anchored our interview guide in concepts of the Theory of Interactive Media Effects (TIME), which formulates UI features as causes and user psychology as effects. Based on the results, we derived 20 design requirements and developed nine design principles grounded in TIME for this class of XAI-based MDSS, either associated with the needs of physicians, patients, or both. Regarding evaluation, we first conducted semi-structured interviews with software developers to assess the reusability of our design principles. Afterward, we conducted a survey with user experience/interface designers. The evaluation uncovered that 77% of the participants would adopt the design principles, and 82% would recommend them to colleagues for a suitable project. The findings prove the reusability of the design principles and highlight a positive perception by potential implementers.

Keywords

  • Design Science Research
  • Design Principles
  • Explainable Artificial Intelligence
  • Medical Decision Support Systems
  • Healthcare

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bulc, V., Hart, B., Hannah, M., Hrovatin, B.: Society 5.0 and a human centred health care. In: Simini, F., Bertemes-Filho, P. (eds.) Medicine-Based Informatics and Engineering. LNB, pp. 147–177. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87845-0_9

    CrossRef  Google Scholar 

  2. Rojas, C.N., Penafiel, G.A.A., Buitrago, D.F.L., Romero, C.A.T.: Society 5.0: a Japanese Concept for a super intelligent society. Sustainability 13, 1–16 (2021)

    Google Scholar 

  3. Sahoo, P.R., Chatterjee, S.M.: Threats and challenges of artificial intelligence in healthcare industry. In: Zhang, Y.D., Senjyu, T., So-In, C., Joshi, A. (eds.) Smart Trends in Computing and Communications, LNNS, vol. 396, pp. 761–770. Springer, Singapore (2023)

    CrossRef  Google Scholar 

  4. Tschandl, P., et al.: Comparison for the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet oncology 20(7), 938–947 (2019)

    CrossRef  Google Scholar 

  5. Tschandl, P., et al.: Human-coputer collaboration for skin cancer recognition 26, 1229–1234 (2020)

    Google Scholar 

  6. Arrieta, A.B., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    CrossRef  Google Scholar 

  7. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    CrossRef  Google Scholar 

  8. Payrovnaziri, S.N., et al.: Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. J. Am. Med. Inform. Assoc. 27(7), 1173–1185 (2020)

    CrossRef  Google Scholar 

  9. Schoonderwoerd, T.A.J., Jorritsma, W., Neerincx, M.A., van den Bosch, K.: Human-centered XAI: developing design patterns for explanations of clinical decision support systems. Int. J. Hum. Comput. Stud. 154, 1–25 (2021)

    CrossRef  Google Scholar 

  10. Barda, A.J., Horvat, C.M., Hochheiser, H.: A qualitative research framework for the design of user-centered displays of explanations for machine learning model predictions in healthcare. BMC Med. Inform. Decis. Mak. 20, 1–16 (2020)

    CrossRef  Google Scholar 

  11. Meske, C., Bunde, E.: Transparency and trust in human-AI-interaction: the role of model-agnostic explanations in computer vision-based decision support. In: Degen, H., Reinerman-Jones, L. (eds.) HCII 2020. LNCS, vol. 12217, pp. 54–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50334-5_4

    CrossRef  Google Scholar 

  12. Chandra Kruse, L., Seidel, S., vom Brocke, J.: Design archaeology: generating design knowledge from real-world artifact design. In: Tulu, B., Djamasbi, S., Leroy, G. (eds.) DESRIST 2019. LNCS, vol. 11491, pp. 32–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19504-5_3

    CrossRef  Google Scholar 

  13. Sonntag, D., Nunnari, F., Profitlich, H.-J.: The Skincare project, an interactive deep learning system for differential diagnosis of malignant skin lesions. DFKI Tech. Rep. H2020, 1–20 (2020)

    Google Scholar 

  14. Meske, C., Bunde, E., Schneider, J., Gersch, M.: Explainable artificial intelligence: objectives, stakeholders, and future research opportunities. Inf. Syst. Manag. 39(1), 53–63 (2022)

    CrossRef  Google Scholar 

  15. Fernandez, A., Insfran, E., Abrahao, S.: Usability evaluation methods for the web: a systematic mapping study. Inf. Softw. Technol. 53, 789–817 (2011)

    CrossRef  Google Scholar 

  16. Sundar, S.S., Jia, H., Waddell, T.F., Huang, Y.: The Handbook of Psychology of Communication Technology, 1st edn. Wiley, Hoboken (2015)

    Google Scholar 

  17. Gregor, S., Chandra Kruse, L., Seidel, S.: Research perspectives: the anatomy of a design principle. J. Assoc. Inf. Syst. 21(6), 1622–1652 (2020)

    Google Scholar 

  18. Sundar, S.S.: Rise of machine agency: a framework for studying the psychology of Human-AI Interaction (HAII). J. Comput.-Mediat. Commun. 25, 74–88 (2020)

    CrossRef  Google Scholar 

  19. Ivari, J., Hansen, M.R.P., Haj-Bolouri, A.: A proposal for minimum reusability evaluation of design principles. Eur. J. Inf. Syst. 30(3), 286–303 (2021)

    CrossRef  Google Scholar 

  20. Dwivedi, A., Dwivedi, S.S., Tariq, M.R., Qiu, X., Hong, S., Xin, Y.: Scope of artificial intelligence in medicine. J. Res. Med. Dent. Sci. 8(3), 137–140 (2020)

    Google Scholar 

  21. Westerbeek, L., et al.: Barriers and facilitators influencing medication-related CDSS acceptance according to clinicians: a systematic review. Int. J. Med. Inform. 152, 1–14 (2021)

    CrossRef  Google Scholar 

  22. Westerbeek, L., de Bruijn, G.-J., van Weert, H.C., Abu-Hanna, A., Medlock, S., van Weert, J.C.M.: General practitioners’ needs and wishes for clinical decision support systems: a focus group study. Int. J. Med. Inform. 168, 1–7 (2022)

    CrossRef  Google Scholar 

  23. Fuji, K.T., Abbot, A.A., Galt, K.A., Drincic, A., Kraft, M., Kasha, T.: Standalone personal health records in the United States: meeting patient desires. Health Technol. 2, 197–205 (2012)

    CrossRef  Google Scholar 

  24. Attfield, S.J., Adams, A., Blandford, A.: Patient information needs: pre- and post-consultation. Health Inform. J. 12(2), 165–177 (2006)

    CrossRef  Google Scholar 

  25. Jefford, M., Tattersall, M.H.: Informing and involving cancer patients in their own care. Lancet Oncol. 3(10), 629–637 (2002)

    CrossRef  Google Scholar 

  26. Hwang, A.H.-C., Oh, J.: Interacting with background music engages E-Customers more: the impact of interactive music on consumer perception and behavioral intention. J. Retail. Consum. Serv. 54, 1–15 (2020)

    CrossRef  Google Scholar 

  27. Sun, Y., Sundar, S.S.: Exploring the effects of interactive dialogue in improving user control for explainable online symptom checkers. In: Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, pp. 1–7. Association for Computing Machinery, New Orleans, LA, USA (2022)

    Google Scholar 

  28. Kuechler, W., Vaishnavi, V.: A framework for theory development in design science research: multiple perspectives. J. Assoc. Inf. Syst. 13(6), 395–423 (2012)

    Google Scholar 

  29. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–101 (2006)

    CrossRef  Google Scholar 

  30. Xu, W., Zammit, K.: Applying thematic analysis to education: a hybrid approach to interpreting data in practitioner research. Int. J. Qual. Methods 19, 1–9 (2020)

    CrossRef  Google Scholar 

  31. Kreuter, M.W., Strecher, V.J., Glassman, B.: One size does not fit all: the case for tailoring print materials. Ann. Behav. Med. 21, 276–283 (1999)

    CrossRef  Google Scholar 

  32. Ku, O., Hou, C.-C., Chen, S.Y.: Incorporating customization and personalization into game-based learning: a cognitive style perspective. Comput. Hum. Behav. 5, 359–368 (2016)

    CrossRef  Google Scholar 

  33. Sundar, S. S., Oh, J., Bellur, S., Jia, H., Kim, H.-S.: Interactivity as self-expression: a field experiment with customization and blogging. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 395–404. Association for Computing Machinery, Austin, Texas, USA (2012)

    Google Scholar 

  34. Bunde, E., Kühl, N., Meske, C.: Fake or credible? towards designing services to support users’ credibility assessment of news content. In: Proceedings of the 55th Hawaii International Conference on System Sciences, pp. 1883–1892 (2021)

    Google Scholar 

  35. Meske, C., Bunde, E.: Design principles for user interfaces in AI-based decision support systems: the case of explainable hate speech detection. Inf. Syst. Front. 1–31 (2022)

    Google Scholar 

  36. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37(2), 337–355 (2013)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This research is partly funded by the pAItient project (BMG, 2520DAT0P2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bunde, E., Eisenhardt, D., Sonntag, D., Profitlich, HJ., Meske, C. (2023). Giving DIAnA More TIMEGuidance for the Design of XAI-Based Medical Decision Support Systems. In: Gerber, A., Baskerville, R. (eds) Design Science Research for a New Society: Society 5.0. DESRIST 2023. Lecture Notes in Computer Science, vol 13873. Springer, Cham. https://doi.org/10.1007/978-3-031-32808-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32808-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32807-7

  • Online ISBN: 978-3-031-32808-4

  • eBook Packages: Computer ScienceComputer Science (R0)