Skip to main content

Crop Residue Incorporation to Enhance Soil Health in the Rice–Wheat System

  • Chapter
  • First Online:
Strategizing Agricultural Management for Climate Change Mitigation and Adaptation

Abstract

There has been a fourfold rise in the world population in the past century. To feed the ever-increasing numbers of people, increased agricultural and industrial processes have put further burden on food production. The utilization of crop waste in fields might be regarded as crucial in developing countries. Agricultural soil health is altered for increasing physical, chemical, and biological process owing to the lack of alternative organic amendments. Agricultural residual management techniques in developing countries, i.e., surface retention, integration, and removal, are discussed in this chapter with their benefits and hazards to the agroecosystems based on cereal crops. The health of agricultural soils has deteriorated as a result of increased food production over time. Nutrient cycling and soil quality are influenced due to the various biological, chemical, and physical processes that occur on organic matter that is returned to the soil in the form of crop residues. This chapter will discuss important biological properties like soil microbial biomass and soil biodiversity; physical properties like soil moisture content, soil temperature, soil compaction, and erosion; and chemical properties like soil cation exchange capacity, soil pH, and soil organic carbon. The competitive use between residue retention and yield in mixed crop/livestock systems in developing nations can be a problem. On the other hand, strategies such as intensification and partial retention, as well as nutrient cycling from manures and alternatives to the current functions of livestock such as a mechanized system or insurance, could reduce the pressure on residues in favor of long-term soil quality and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abail, Z., & Whalen, J. K. (2018). Corn residue inputs influence earthworm population dynamics in a no-till corn-soybean rotation. Applied Soil Ecology, 127, 120–128. https://doi.org/10.1016/j.apsoil.2018.03.013

    Article  Google Scholar 

  • Abera, G., Wolde-Meskel, E., & Bakken, L. R. (2012). Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biology and Fertility of Soils, 48(1), 51–66. https://doi.org/10.1007/s00374-011-0607-8

    Article  CAS  Google Scholar 

  • Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J. P., & Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: A critical review. Water Research, 160, 130–147. https://doi.org/10.1016/j.watres.2019.05.064

    Article  CAS  Google Scholar 

  • Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11, 1.

    Article  Google Scholar 

  • Ali, M., Saleem, M., Khan, Z., & Watson, I. A. (2019). The use of crop residues for biofuel production. In Biomass, biopolymer-based materials, and bioenergy (pp. 369–395). Elsevier.

    Chapter  Google Scholar 

  • Almendro-Candel, M. B., Lucas, I. G., Navarro-Pedreño, J., & Zorpas, A. A. (2018). Physical properties of soils affected by the use of agricultural waste. Agricultural Waste and Residues, 2, 9–27.

    Google Scholar 

  • Aula, L., Dhillon, J. S., Omara, P., Wehmeyer, G. B., Freeman, K. W., & Raun, W. R. (2019). World sulfur use efficiency for cereal crops. Agronomy Journal, 111(5), 2485–2492. https://doi.org/10.2134/agronj2019.02.0095

    Article  CAS  Google Scholar 

  • Bandh, S. A. (2022a). Climate change: The social and scientific construct (1st ed.). Springer. https://doi.org/10.1007/978-3-030-86290-9

    Book  Google Scholar 

  • Bandh, S. A. (2022b). Sustainable agriculture: Technological progressions and transitions (1st ed.). Springer. https://doi.org/10.1007/978-3-030-83066-3

    Book  Google Scholar 

  • Bandh, S. A., Shafi, S., Peerzada, M., Rehman, T., Bashir, S., Wani, S. A., & Dar, R. (2021). Multidimensional analysis of global climate change: A review. Environmental Science and Pollution Research International, 28(20), 24872–24888. https://doi.org/10.1007/s11356-021-13139-7

    Article  CAS  Google Scholar 

  • Bandh, S. A., Parray, J. A., & Shameem, N. (2022). Climate change and microbial diversity: Advances and challenges (1st ed.). Apple Academic Press. https://www.routledge.com/Climate-Change-and-Microbial-Diversity-Advances-and-Challenges/Bandh-Parray-Shameem/p/book/9781774637821

    Book  Google Scholar 

  • Bandh, S. A., Malla, F. A., Qayoom, I., Mohi-ud-Din, H., Butt, A. K., Altaf, A., Wani, S. A., Betts, R., Truong, T. H., Pham, N. D. K., Cao, D. N., & Ahmed, S. F. (2023). Importance of blue carbon in mitigating climate change and plastic/microplastic pollution and promoting circular economy. Sustainability, 15(3), 2682. https://doi.org/10.3390/su15032682

    Article  CAS  Google Scholar 

  • Basu, S., Rabara, R. C., & Negi, S. (2018). AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, 102, 36–45. https://doi.org/10.1016/j.pmpp.2017.11.007

    Article  Google Scholar 

  • Bender, S. F., Wagg, C., & van der Heijden, M. G. A. (2016). An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology and Evolution, 31(6), 440–452. https://doi.org/10.1016/j.tree.2016.02.016

    Article  Google Scholar 

  • Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T., & Roger-Estrade, J. (2015). Earthworm services for cropping systems. A review. Agronomy for Sustainable Development, 35(2), 553–567. https://doi.org/10.1007/s13593-014-0269-7

    Article  CAS  Google Scholar 

  • Bhattacharyya, R., Tuti, M. D., Kundu, S., Bisht, J. K., & Bhatt, J. C. (2012). Conservation tillage impacts on soil aggregation and carbon pools in a sandy clay loam soil of the Indian Himalayas. Soil Science Society of America Journal, 76(2), 617–627. https://doi.org/10.2136/sssaj2011.0320

    Article  CAS  Google Scholar 

  • Bisen, N., & Rahangdale, C. (2017). Crop residues management option for sustainable soil health in rice-wheat system: A review. International Journal of Chemical Studies, 5, 1038–1042.

    Google Scholar 

  • Briones, M. J. I., & Schmidt, O. (2017). Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Global Change Biology, 23(10), 4396–4419. https://doi.org/10.1111/gcb.13744

    Article  Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Bruun, T. B., Elberling, B., de Neergaard, A., & Magid, J. (2015). Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation and Development, 26(3), 272–283. https://doi.org/10.1002/ldr.2205

    Article  Google Scholar 

  • Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120, 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  CAS  Google Scholar 

  • Butterly, C. R., Baldock, J. A., & Tang, C. (2013). The contribution of crop residues to changes in soil pH under field conditions. Plant and Soil, 366(1–2), 185–198. https://doi.org/10.1007/s11104-012-1422-1

    Article  CAS  Google Scholar 

  • Celik, I., Günal, H., Acar, M., Gök, M., Bereket Barut, Z., & Pamiralan, H. (2017). Long-term tillage and residue management effect on soil compaction and nitrate leaching in a Typic Haploxerert soil. International Journal of Plant Production, 11, 131–149.

    Google Scholar 

  • Chen, Z., Ti, J.-s., & Chen, F. (2017). Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China. Nutrient Cycling in Agroecosystems, 109(2), 103–114. https://doi.org/10.1007/s10705-017-9864-8

    Article  Google Scholar 

  • Chowdhury, S., Farrell, M., Butler, G., & Bolan, N. (2015). Assessing the effect of crop residue removal on soil organic carbon storage and microbial activity in a no-till cropping system. Soil Use and Management, 31(4), 450–460. https://doi.org/10.1111/sum.12215

    Article  Google Scholar 

  • Dendooven, L., Patiño-Zúñiga, L., Verhulst, N., Luna-Guido, M., Marsch, R., & Govaerts, B. (2012). Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agriculture, Ecosystems and Environment, 152, 50–58. https://doi.org/10.1016/j.agee.2012.02.010

    Article  Google Scholar 

  • Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9(3), 034011. https://doi.org/10.1088/1748-9326/9/3/034011

    Article  Google Scholar 

  • Dheri, G. S., & Nazir, G. (2021). A review on carbon pools and sequestration as influenced by long-term management practices in a rice–wheat cropping system. Carbon Management, 12(5), 559–580. https://doi.org/10.1080/17583004.2021.1976674

    Article  CAS  Google Scholar 

  • Dias, T., Dukes, A., & Antunes, P. M. (2015). Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. Journal of the Science of Food and Agriculture, 95(3), 447–454. https://doi.org/10.1002/jsfa.6565

    Article  CAS  Google Scholar 

  • Din, W. M. U., Hussain, M. M., & Farooqi, Z. U. R. (2022). Climate change-induced aggravations in microbial populations and processes: Constraints and remediations. In Climate change and microbes (pp. 25–49). Apple Academic Press.

    Chapter  Google Scholar 

  • Eswaran, H., Lal, R., & Reich, P. (2019). Land degradation: An overview. In Response to land degradation (pp. 20–35). CRC Press.

    Chapter  Google Scholar 

  • Farid Eltom, A. E., Ding, W., Ding, Q., Tagar, A. A., Talha, Z., & Gamareldawla. (2015). Field investigation of a trash-board, tillage depth and low speed effect on the displacement and burial of straw. CATENA, 133, 385–393. https://doi.org/10.1016/j.catena.2015.05.025

    Article  Google Scholar 

  • Farooqi, Z. U. R., Hameed, M. A., Mohy-Ud-Din, W., Ali, M. H., Qadir, A., & Hussain, M. M. (2021). Global climate change and microbial ecology: Current scenario and management. In Microbiological activity for soil and plant health management (pp. 285–313). Springer.

    Chapter  Google Scholar 

  • Farooqi, Z. U. R., Din, W. M. U., & Hussain, M. M. (2022). Microbial responses under climate change scenarios: Adaptation and mitigations. In Climate change and microbial diversity (pp. 1–20). Apple Academic Press.

    Google Scholar 

  • Fasinmirin, J. T., & Reichert, J. M. (2011). Conservation tillage for cassava (Manihot esculenta Crantz) production in the tropics. Soil and Tillage Research, 113(1), 1–10. https://doi.org/10.1016/j.still.2011.01.008

    Article  Google Scholar 

  • Feng, J., He, K., Zhang, Q., Han, M., & Zhu, B. (2022). Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology, 28(10), 3426–3440. https://doi.org/10.1111/gcb.16107

    Article  CAS  Google Scholar 

  • Ginni, G., Kavitha, S., Yukesh Kannah, R., Bhatia, S. K., Adish Kumar, S., Rajkumar, M., Kumar, G., Pugazhendhi, A., Chi, N. T. L., & Rajesh Banu, J. (2021). Valorization of agricultural residues: Different biorefinery routes. Journal of Environmental Chemical Engineering, 9(4), 105435. https://doi.org/10.1016/j.jece.2021.105435

    Article  CAS  Google Scholar 

  • Grzyb, A., Wolna-Maruwka, A., & Niewiadomska, A. (2020). Environmental factors affecting the mineralization of crop residues. Agronomy, 10(12). https://doi.org/10.3390/agronomy10121951

  • Hameed, M. A., Farooqi, Z. U. R., Hussain, M. M., & Ayub, M. A. (2021a). PGPR-assisted bioremediation and plant growth: A sustainable approach for crop production using polluted soils. In Plant growth regulators: Signalling under stress conditions (p. 403). Springer.

    Chapter  Google Scholar 

  • Hameed, M. A., Farooqi, Z. U. R., Younas, F., Din, W. M. U., Hussain, M. M., & Khilji, S. A. (2021b). Microplastic pollution: Sources, fate, impacts and research gaps. Quality of Life, 20, 39–50.

    Google Scholar 

  • Havlicek, E., & Mitchell, E. A. (2014). Soils supporting biodiversity. In Interactions in soil: Promoting plant growth (pp. 27–58). Springer.

    Chapter  Google Scholar 

  • Heikkinen, J., Ketoja, E., Seppänen, L., Luostarinen, S., Fritze, H., Pennanen, T., Peltoniemi, K., Velmala, S., Hanajik, P., & Regina, K. (2021). Chemical composition controls the decomposition of organic amendments and influences the microbial community structure in agricultural soils. Carbon Management, 12(4), 359–376. https://doi.org/10.1080/17583004.2021.1947386

    Article  CAS  Google Scholar 

  • Heil, J., Vereecken, H., & Brüggemann, N. (2016). A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. European Journal of Soil Science, 67(1), 23–39. https://doi.org/10.1111/ejss.12306

    Article  CAS  Google Scholar 

  • Hijbeek, R., van Ittersum, M. K., ten Berge, H. F. M., Gort, G., Spiegel, H., & Whitmore, A. P. (2017). Do organic inputs matter–a meta-analysis of additional yield effects for arable crops in Europe. Plant and Soil, 411(1–2), 293–303. https://doi.org/10.1007/s11104-016-3031-x

    Article  CAS  Google Scholar 

  • Huera-Lucero, T., Labrador-Moreno, J., Blanco-Salas, J., & Ruiz-Téllez, T. (2020). A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustainability, 12(7), 3007. https://doi.org/10.3390/su12073007

    Article  Google Scholar 

  • Hussain, M., Farooqi, Z., Mohy-Ud-Din, W., Younas, F., Shahzad, M., Ghani, M., Ayub, M., & Qadeer, A. (2021a). Application of Bioremediation as sustainable approach to remediate heavy metal and pesticide polluted environments. Plant and Environment, 1, 62–92.

    Google Scholar 

  • Hussain, M. M., Farooqi, Z. U. R., Latif, J., Mubarak, M. U., & Younas, F. (2021b). Bioremediation: A Green Solution to avoid Pollution of the Environment. In Soil bioremediation: An approach towards sustainable technology (pp. 15–40). Wiley-Blackwell.

    Chapter  Google Scholar 

  • Hussain, M. M., Farooqi, Z. U. R., Rasheed, F., & Din, W. M. U. (2021c). Role of microorganisms as climate engineers: Mitigation and adaptations to climate change. In Climate change and microbes (pp. 1–24). Apple Academic Press.

    Google Scholar 

  • Hussain, M. M., Mohy-Ud-Din, W., Younas, F., Niazi, N. K., Bibi, I., Yang, X., Rasheed, F., & Farooqi, Z. U. R. (2022). Biochar: A game changer for sustainable agriculture. Journal of Sustainable Agriculture, 143–157. Springer.

    Google Scholar 

  • Iqbal, M., Ul-Hassan, A., & van Es, H. M. (2011). Influence of residue management and tillage systems on carbon sequestration and nitrogen, phosphorus, and potassium dynamics of soil and plant and wheat production in semi-arid region. Communications in Soil Science and Plant Analysis, 42(5), 528–547. https://doi.org/10.1080/00103624.2011.546929

    Article  CAS  Google Scholar 

  • Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy, 11(10). https://doi.org/10.3390/agronomy11102010

  • Kareem, A., Farooqi, Z. U. R., Kalsom, A., Mohy-Ud-Din, W., Hussain, M. M., Raza, M., & Khursheed, M. M. (2022). Organic farming for sustainable soil use, management, food production and climate change mitigation. Journal of Sustainable Agriculture, 39–59. Springer.

    Google Scholar 

  • Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., & Golden, B. R. (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 112(3), 1475–1501. https://doi.org/10.1002/agj2.20093

    Article  Google Scholar 

  • Lehman, R. M., Cambardella, C. A., Stott, D. E., Acosta-Martinez, V., Manter, D. K., Buyer, J. S., Maul, J. E., Smith, J. L., Collins, H. P., Halvorson, J. J., Kremer, R., Lundgren, J., Ducey, T., Jin, V., & Karlen, D. (2015). Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability, 7(1), 988–1027. https://doi.org/10.3390/su7010988

    Article  Google Scholar 

  • Li, C.-f., Yue, L.-x., Kou, Z.-k., Zhang, Z.-s., Wang, J.-p., & Cao, C.-g. (2012). Short-term effects of conservation management practices on soil labile organic carbon fractions under a rape–rice rotation in central China. Soil and Tillage Research, 119, 31–37. https://doi.org/10.1016/j.still.2011.12.005

    Article  Google Scholar 

  • Li, J., Wu, X., Gebremikael, M. T., Wu, H., Cai, D., Wang, B., Li, B., Zhang, J., Li, Y., & Xi, J. (2018). Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system. PLoS One, 13(4), e0195144. https://doi.org/10.1371/journal.pone.0195144

    Article  CAS  Google Scholar 

  • Li, Y., Xu, J., Hu, J., Zhang, T., Wu, X., & Yang, Y. (2022). Arbuscular mycorrhizal fungi and glomalin play a crucial role in soil aggregate stability in Pb-contaminated soil. International Journal of Environmental Research and Public Health, 19(9), 5029. https://doi.org/10.3390/ijerph19095029

    Article  CAS  Google Scholar 

  • Luo, Y., Iqbal, A., He, L., Zhao, Q., Wei, S., Ali, I., Ullah, S., Yan, B., & Jiang, L. (2020). Long-term no-tillage and straw retention management enhances soil bacterial community diversity and soil properties in Southern China. Agronomy, 10(9), 1233. https://doi.org/10.3390/agronomy10091233

    Article  CAS  Google Scholar 

  • Malla, F. A., Mushtaq, A., Bandh, S. A., Qayoom, I., Ho-ang, A. T., & Shahid-e-Murtaza. (2022). Understanding climate change: Scientific opinion and public perspective. In S. A. Bandh (Ed.), Climate change: The social and scientific construct. Springer Nature Publishing. https://link.springer.com/chapter/10.1007/978-3-030-86290-9_1

    Google Scholar 

  • Menta, C. (2012). Soil fauna diversity-function, soil degradation, biological indices, soil restoration. In Biodiversity conservation and utilization in a diverse world (pp. 59–94). InTech.

    Google Scholar 

  • Mert, A., Celik, I., & Günal, H. (2018). Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey. Eurasian Journal of Soil Science, 7, 51–58.

    Google Scholar 

  • Minas, A. M., Mander, S., & McLachlan, C. (2020). How can we engage farmers in bioenergy development? Building a social innovation strategy for rice straw bioenergy in The Philippines and Vietnam. Energy Research and Social Science, 70, 101717. https://doi.org/10.1016/j.erss.2020.101717

    Article  Google Scholar 

  • Mirzaei, M., Gorji Anari, M., Razavy-Toosi, E., Asadi, H., Moghiseh, E., Saronjic, N., & Rodrigo-Comino, J. (2021). Preliminary effects of crop residue management on soil quality and crop production under different soil management regimes in corn-wheat rotation systems. Agronomy, 11(2), 302. https://doi.org/10.3390/agronomy11020302

    Article  CAS  Google Scholar 

  • Mischler, J., Johnson, P. T., McKenzie, V. J., & Townsend, A. R. (2016). Parasite infection alters nitrogen cycling at the ecosystem scale. Journal of Animal Ecology, 85(3), 817–828. https://doi.org/10.1111/1365-2656.12505

    Article  Google Scholar 

  • Mitchell, E., Scheer, C., Rowlings, D., Conant, R. T., Cotrufo, M. F., & Grace, P. (2018). Amount and incorporation of plant residue inputs modify residue stabilisation dynamics in soil organic matter fractions. Agriculture, Ecosystems and Environment, 256, 82–91. https://doi.org/10.1016/j.agee.2017.12.006

    Article  Google Scholar 

  • Mushtaq, B., Bandh, S. A., & Shafi, S. (2020). Environmental management: Environmental issues, awareness and abatement (1st ed.). Springer. https://doi.org/10.1007/978-981-15-3813-1

    Book  Google Scholar 

  • Navarro-Pedreño, J., Almendro-Candel, M. B., & Zorpas, A. A. (2021). The increase of soil organic matter reduces global warming, myth or reality? Sci, 3(1), 18. https://doi.org/10.3390/sci3010018

    Article  Google Scholar 

  • Naveen Kumar, B. T., & Babalad, H. B. (2018). Soil organic carbon, carbon sequestration, soil microbial biomass carbon and nitrogen and soil enzymatic activity as influenced by conservation agriculture in pigeonpea and soybean intercropping system. International Journal of Current Microbiology and Applied Sciences, 7(3), 323–333. https://doi.org/10.20546/ijcmas.2018.703.038

    Article  CAS  Google Scholar 

  • Nyakudya, I. W., & Stroosnijder, L. (2015). Conservation tillage of rainfed maize in semi-arid Zimbabwe: A review. Soil and Tillage Research, 145, 184–197. https://doi.org/10.1016/j.still.2014.09.003

    Article  Google Scholar 

  • Parray, J. A., Bandh, S. A., & Shameem, N. (2022). Climate change and microbes: Impact and vulnerability (1st ed.). Apple Academic Press. https://www.routledge.com/Climate-Change-and-Microbes-Impacts-and-Vulnerability/Parray-Bandh-Shameem/p/book/9781774637210

    Book  Google Scholar 

  • Paterson, E., & Sim, A. (2013). Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Global Change Biology, 19(5), 1562–1571. https://doi.org/10.1111/gcb.12140

    Article  Google Scholar 

  • Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. European Journal of Soil Science, 62(1), 42–55. https://doi.org/10.1111/j.1365-2389.2010.01342.x

    Article  CAS  Google Scholar 

  • Prasad, J. V. N. S., Rao, C. S., Srinivas, K., Jyothi, C. N., Venkateswarlu, B., Ramachandrappa, B. K., Dhanapal, G. N., Ravichandra, K., & Mishra, P. K. (2016). Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in alfisols of semi arid tropics of southern India. Soil and Tillage Research, 156, 131–139. https://doi.org/10.1016/j.still.2015.10.013

    Article  Google Scholar 

  • Qadir, A., Hameed, M., Bin Zafar, M., Farooqi, Z., Younas, F., Hussain, M., & Mohy-Ud-Din, W. (2021). Phytoremediation of inorganic pollutants: An eco-friendly approach, its types and mechanisms. Plant and Environment, 1, 110–129.

    Google Scholar 

  • Sapkota, T. B. (2012). Conservation tillage impact on soil aggregation, organic matter turnover and biodiversity. In Organic fertilisation, soil quality and human health (pp. 141–160). Springer.

    Chapter  Google Scholar 

  • Sidhu, H. S., Manpreet-Singh, Humphreys, E., Yadvinder-Singh, Balwinder-Singh, Dhillon, S. S., Blackwell, J., Bector, V., Malkeet-Singh, & Sarbjeet-Singh. (2007). The happy seeder enables direct drilling of wheat into rice stubble. Australian Journal of Experimental Agriculture, 47(7), 844–854. https://doi.org/10.1071/EA06225

    Article  Google Scholar 

  • Singh, Y., & Sidhu, H. S. (2014). Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic plains of India. Proceedings of the Indian National Science Academy, 80(1), 95–114. https://doi.org/10.16943/ptinsa/2014/v80i1/55089

    Article  CAS  Google Scholar 

  • Sithole, N. J., Magwaza, L. S., & Mafongoya, P. L. (2016). Conservation agriculture and its impact on soil quality and maize yield: A South African perspective. Soil and Tillage Research, 162, 55–67. https://doi.org/10.1016/j.still.2016.04.014

    Article  Google Scholar 

  • Somasundaram, J., Sinha, N. K., Dalal, R. C., Lal, R., Mohanty, M., Naorem, A. K., Hati, K. M., Chaudhary, R. S., Biswas, A. K., Patra, A. K., & Chaudhari, S. K. (2020). No-till farming and conservation agriculture in South Asia–issues, challenges, prospects and benefits. Critical Reviews in Plant Sciences, 39(3), 236–279. https://doi.org/10.1080/07352689.2020.1782069

    Article  CAS  Google Scholar 

  • Sombrero, A., & De Benito, A. (2010). Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil and Tillage Research, 107(2), 64–70. https://doi.org/10.1016/j.still.2010.02.009

    Article  Google Scholar 

  • Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., & Kunhikrishnan, A. (2013). Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 465, 72–96. https://doi.org/10.1016/j.scitotenv.2013.01.031

    Article  CAS  Google Scholar 

  • Tiwari, S., Singh, C., Boudh, S., Rai, P. K., Gupta, V. K., & Singh, J. S. (2019). Land use change: A key ecological disturbance declines soil microbial biomass in dry tropical uplands. Journal of Environmental Management, 242, 1–10. https://doi.org/10.1016/j.jenvman.2019.04.052

    Article  CAS  Google Scholar 

  • Turmel, M.-S., Speratti, A., Baudron, F., Verhulst, N., & Govaerts, B. (2015). Crop residue management and soil health: A systems analysis. Agricultural Systems, 134, 6–16. https://doi.org/10.1016/j.agsy.2014.05.009

    Article  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14(4), 605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x

    Article  CAS  Google Scholar 

  • Urra, J., Alkorta, I., & Garbisu, C. (2019). Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy, 9(9), 542. https://doi.org/10.3390/agronomy9090542

    Article  CAS  Google Scholar 

  • Valkama, E., Kunypiyaeva, G., Zhapayev, R., Karabayev, M., Zhusupbekov, E., Perego, A., Schillaci, C., Sacco, D., Moretti, B., Grignani, C., & Acutis, M. (2020). Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma, 369, 114298. https://doi.org/10.1016/j.geoderma.2020.114298

    Article  CAS  Google Scholar 

  • Vanhie, M., Deen, W., Lauzon, J. D., & Hooker, D. C. (2015). Effect of increasing levels of maize (Zea mays L.) residue on no-till soybean (Glycine max Merr.) in Northern production regions: A review. Soil and Tillage Research, 150, 201–210. https://doi.org/10.1016/j.still.2015.01.011

    Article  Google Scholar 

  • Verhulst, N., Carrillo-García, A., Moeller, C., Trethowan, R., Sayre, K. D., & Govaerts, B. (2011a). Conservation agriculture for wheat-based cropping systems under gravity irrigation: Increasing resilience through improved soil quality. Plant and Soil, 340(1–2), 467–479. https://doi.org/10.1007/s11104-010-0620-y

    Article  CAS  Google Scholar 

  • Verhulst, N., Kienle, F., Sayre, K. D., Deckers, J., Raes, D., Limon-Ortega, A., Tijerina-Chavez, L., & Govaerts, B. (2011b). Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant and Soil, 340(1–2), 453–466. https://doi.org/10.1007/s11104-010-0618-5

    Article  CAS  Google Scholar 

  • Victoria, R., Banwart, S., Black, H., Ingram, J., Joosten, H., Milne, E., Noellemeyer, E., & Baskin, Y. (2012). The benefits of soil carbon. Foresight chapter in UNEP [Yearbook], 2012 (pp. 19–33).

    Google Scholar 

  • Walsh, O. S., & Belmont, K. M. (2015). Improving nitrogen-use efficiency in Idaho crop production. University of Idaho Extension.

    Google Scholar 

  • Wander, M. M., Cihacek, L. J., Coyne, M., Drijber, R. A., Grossman, J. M., Gutknecht, J. L. M., Horwath, W. R., Jagadamma, S., Olk, D. C., Ruark, M., Snapp, S. S., Tiemann, L. K., Weil, R., & Turco, R. F. (2019). Developments in agricultural soil quality and health: Reflections by the research committee on soil organic matter management. Frontiers in Environmental Science, 7, 109. https://doi.org/10.3389/fenvs.2019.00109

    Article  Google Scholar 

  • Wang, H., Wang, S., Yu, Q., Zhang, Y., Wang, R., Li, J., & Wang, X. (2020). No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management, 261, 110261. https://doi.org/10.1016/j.jenvman.2020.110261

    Article  CAS  Google Scholar 

  • Wei, L., Vosátka, M., Cai, B., Ding, J., Lu, C., Xu, J., Yan, W., Li, Y., & Liu, C. (2019). The role of arbuscular mycorrhiza fungi in the decomposition of fresh residue and soil organic carbon: A mini-review. Soil Science Society of America Journal, 83(3), 511–517. https://doi.org/10.2136/sssaj2018.05.0205

    Article  CAS  Google Scholar 

  • West, T. O., & Six, J. (2007). Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 80(1–2), 25–41. https://doi.org/10.1007/s10584-006-9173-8

    Article  CAS  Google Scholar 

  • Wijesinha-Bettoni, R., & Mouillé, B. (2019). The contribution of potatoes to global food security, nutrition and healthy diets. American Journal of Potato Research, 96(2), 139–149. https://doi.org/10.1007/s12230-018-09697-1

    Article  Google Scholar 

  • Yang, X., Drury, C. F., & Wander, M. M. (2013). A wide view of no-tillage practices and soil organic carbon sequestration. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 63(6), 523–530. https://doi.org/10.1080/09064710.2013.816363

    Article  CAS  Google Scholar 

  • Younas, F., Mustafa, A., Farooqi, Z. U. R., Wang, X., Younas, S., Mohy-Ud-Din, W., Ashir Hameed, M., Mohsin Abrar, M., Maitlo, A. A., Noreen, S., & Hussain, M. M. (2021). Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water, 13(2), 215. https://doi.org/10.3390/w13020215

    Article  CAS  Google Scholar 

  • Zhang, H., Zhang, Y., Yan, C., Liu, E., & Chen, B. (2016). Soil nitrogen and its fractions between long-term conventional and no-tillage systems with straw retention in dryland farming in northern China. Geoderma, 269, 138–144. https://doi.org/10.1016/j.geoderma.2016.02.001

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, X., Gregorich, E. G., McLaughlin, N. B., Zhang, X., Guo, Y., Liang, A., Fan, R., & Sun, B. (2018). No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China. Geoderma, 330, 204–211. https://doi.org/10.1016/j.geoderma.2018.05.037

    Article  CAS  Google Scholar 

  • Zhou, X., Wu, H., Li, G., & Chen, C. (2016). Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia. Environmental Science and Pollution Research International, 23(22), 23175–23183. https://doi.org/10.1007/s11356-016-7549-5

    Article  CAS  Google Scholar 

  • Zuo, L., Zhang, Z., Carlson, K. M., MacDonald, G. K., Brauman, K. A., Liu, Y., Zhang, W., Zhang, H., Wu, W., Zhao, X., Wang, X., Liu, B., Yi, L., Wen, Q., Liu, F., Xu, J., Hu, S., Sun, F., Gerber, J. S., & West, P. C. (2018). Progress towards sustainable intensification in China challenged by land-use change. Nature Sustainability, 1(6), 304–313. https://doi.org/10.1038/s41893-018-0076-2

    Article  Google Scholar 

Download references

Acknowledgements

Authors want to thank the Higher Education Commission, Pakistan, for awarding fellowship under the International Research Support Initiative Program (IRSIP) Muhammad Mahroz Hussain no. 1-8/HEC/HRD/2020/10831, and also to the Environmental Biogeochemistry Laboratory, University of Agriculture Faisalabad, Pakistan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashir, H., Mohy-Ud-Din, W., Choudary, Z.M., Hussain, M.M., Hameed, M.A. (2023). Crop Residue Incorporation to Enhance Soil Health in the Rice–Wheat System. In: Bandh, S.A. (eds) Strategizing Agricultural Management for Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-031-32789-6_4

Download citation

Publish with us

Policies and ethics