Skip to main content

The Use of Cone Beam Computed Tomography in Piezosurgery and Static Navigation (PRESS)

  • Chapter
  • First Online:
3D Imaging in Endodontics
  • 159 Accesses

Abstract

Treatment of a failing endodontic procedure via microsurgical revision presents better outcomes due, in part, to the integration of the surgical operating microscope (SOM) and CBCT into clinical practice. But challenges still remain with respect to the operational locations and the techniques required to address them. Posterior sites, with substantial cortical plate thicknesses and sensitive anatomy, present the dichotomy of visualization versus post-surgical regeneration of bone. The bony lid technique bridges the gap between these two concepts, and the application of Piezosurgery renders a precise and biocompatible osseous incision.

The primary evolution of the bony lid technique relied on the transfer of measurements from defined landmarks in the CBCT volume to the cortical plate of the surgical site. The secondary evolution utilized a vacuformed stent fabricated with pertinent fiducial markers in gutta-percha defining the surgical site parameters, and a scan exposed with the stent in place. The third and final evolution utilized the digital workflow to virtually plan the surgical procedure, integrating STL and DICOM files to create 3-dimensional guides with exacting resection locations, levels, and angles. Export of the virtually planned guide in post-production generates the precision endodontic surgical stent (PRESS).

The progression from crude on-site measurements to elegant and precise surgical guides enabled the access and manipulations of difficult surgical sites without compromising visibility, post-operative osseous regeneration or patient comfort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod. 2006;32(7):601–23.

    Article  PubMed  Google Scholar 

  2. Setzer FC, et al. Outcome of endodontic surgery: a meta-analysis of the literature–Part 2: comparison of endodontic microsurgical techniques with and without the use of higher magnification. J Endod. 2012;38(1):1–10.

    PubMed  Google Scholar 

  3. Setzer FC, et al. Outcome of endodontic surgery: a meta-analysis of the literature–part 1: comparison of traditional root-end surgery and endodontic microsurgery. J Endod. 2010;36(11):1757–65.

    Article  PubMed  Google Scholar 

  4. Farman AG, Scarfe WC. 3 D X-ray: an update. Inside Dentistry. 2007;3(6):70–4.

    Google Scholar 

  5. Durack C, Patel S. The use of cone beam computed tomography in the management of dens invaginatus affecting a strategic tooth in a patient affected by hypodontia: a case report. Int Endod J. 2011;44(5):474–83.

    Article  PubMed  Google Scholar 

  6. Vizzotto MB, et al. CBCT for the assessment of second mesiobuccal (MB2) canals in maxillary molar teeth: effect of voxel size and presence of root filling. Int Endod J. 2013;46(9):870–6.

    Article  PubMed  Google Scholar 

  7. Venskutonis T, et al. The importance of cone-beam computed tomography in the management of endodontic problems: a review of the literature. J Endod. 2014;40(12):1895–901.

    Article  PubMed  Google Scholar 

  8. Tang L, et al. Detection of vertical root fracture using cone beam computed tomography: report of two cases. Dent Traumatol. 2011;27(6):484–8.

    Article  PubMed  Google Scholar 

  9. Schryvers A, et al. Endodontic management of a maxillary first molar with two palatal roots: a case report. Aust Endod J. 2019;45(3):420–5.

    Article  PubMed  Google Scholar 

  10. Bornstein MM, et al. Comparison of periapical radiography and limited cone-beam computed tomography in mandibular molars for analysis of anatomical landmarks before apical surgery. J Endod. 2011;37(2):151–7.

    Article  PubMed  Google Scholar 

  11. Braut V, et al. Thickness of the anterior maxillary facial bone wall-a retrospective radiographic study using cone beam computed tomography. Int J Periodontics Restorative Dent. 2011;31(2):125–31.

    PubMed  Google Scholar 

  12. Zahedi S, Mostafavi M, Lotfirikan N. Anatomic study of mandibular posterior teeth using cone-beam computed tomography for endodontic surgery. J Endod. 2018;44(5):738–43.

    Article  PubMed  Google Scholar 

  13. Lavasani SA, et al. Cone-beam computed tomography: anatomic analysis of maxillary posterior teeth-impact on endodontic microsurgery. J Endod. 2016;42(6):890–5.

    Article  PubMed  Google Scholar 

  14. Yeung AWK, et al. Frequency, location, and association with dental pathology of mucous retention cysts in the maxillary sinus. A radiographic study using cone beam computed tomography (CBCT). Clin Oral Investig. 2018;22(3):1175–83.

    Article  PubMed  Google Scholar 

  15. Suter VG, et al. Radiographic volume analysis as a novel tool to determine nasopalatine duct cyst dimensions and its association with presenting symptoms and postoperative complications. Clin Oral Investig. 2015;19(7):1611–8.

    Article  PubMed  Google Scholar 

  16. Schneider AC, et al. Characteristics and dimensions of the sinus membrane in patients referred for single-implant treatment in the posterior maxilla: a cone beam computed tomographic analysis. Int J Oral Maxillofac Implants. 2013;28(2):587–96.

    Article  PubMed  Google Scholar 

  17. Bornstein MM, et al. Characteristics and dimensions of the Schneiderian membrane and apical bone in maxillary molars referred for apical surgery: a comparative radiographic analysis using limited cone beam computed tomography. J Endod. 2012;38(1):51–7.

    Article  PubMed  Google Scholar 

  18. Ducommun J, et al. Distances of root apices to adjacent anatomical structures in the anterior maxilla: an analysis using cone beam computed tomography. Clin Oral Investig. 2019;23(5):2253–63.

    Article  PubMed  Google Scholar 

  19. von Arx T, et al. Perforation of the maxillary sinus floor during apical surgery of maxillary molars: a retrospective analysis using cone beam computed tomography. Aust Endod J. 2020;46(2):176–83.

    Article  Google Scholar 

  20. von Arx T, et al. Radiographic study of the mandibular retromolar canal: an anatomic structure with clinical importance. J Endod. 2011;37(12):1630–5.

    Article  Google Scholar 

  21. Ugur Aydin Z, Goller Bulut D. Relationship between the anatomic structures and mandibular posterior teeth for endodontic surgery in a Turkish population: a cone-beam computed tomographic analysis. Clin Oral Investig. 2019;23(9):3637–44.

    Article  PubMed  Google Scholar 

  22. Koivisto T, et al. Mandibular Canal location: cone-beam computed tomography examination. J Endod. 2016;42(7):1018–21.

    Article  PubMed  Google Scholar 

  23. Katakami K, et al. Characteristics of accessory mental foramina observed on limited cone-beam computed tomography images. J Endod. 2008;34(12):1441–5.

    Article  PubMed  Google Scholar 

  24. Kalender A, et al. Cone-beam computed tomography analysis of the vestibular surgical pathway to the palatine root of the maxillary first molar. Eur J Dent. 2013;7(1):35–40.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Danesh-Sani SA, et al. Radiographic evaluation of maxillary sinus Lateral Wall and posterior superior alveolar artery anatomy: a cone-beam computed tomographic study. Clin Implant Dent Relat Res. 2017;19(1):151–60.

    Article  PubMed  Google Scholar 

  26. Panjnoush M, Rabiee ZS, Kheirandish Y. Assessment of location and anatomical characteristics of mental foramen, anterior loop and mandibular Incisive Canal using cone beam computed tomography. J Dent (Tehran). 2016;13(2):126–32.

    PubMed  Google Scholar 

  27. Creasy JE, Mines P, Sweet M. Surgical trends among endodontists: the results of a web-based survey. J Endod. 2009;35(1):30–4.

    Article  PubMed  Google Scholar 

  28. Khoury F, Hensher R. The bony lid approach for the apical root resection of lower molars. Int J Oral Maxillofac Surg. 1987;16(2):166–70.

    Article  PubMed  Google Scholar 

  29. Lasaridis N, Zouloumis L, Antoniadis K. Bony lid approach for apicoectomy of mandibular molars. Aust Dent J. 1991;36(5):366–8.

    Article  PubMed  Google Scholar 

  30. Khoury F. The bony lid approach in pre-implant and implant surgery: a prospective study. Eur J Oral Implantol. 2013;6(4):375–84.

    PubMed  Google Scholar 

  31. Lindorf HH. Bone flap closure following opening of the maxillary antrum. Dtsch Zahnarztl Z. 1974;29(Jul):587–90.

    PubMed  Google Scholar 

  32. Lindorf HH. Animal studies on osteoplastic maxillary sinus surgery (bone lid method). Dtsch Z Mund Kiefer Gesichtschir. 1983;7:378–83.

    Google Scholar 

  33. Khoury F. Surgical procedures and long-term results of preimplantation surgery. Quintessence Dent Implantol. 1995;2:225–35.

    Google Scholar 

  34. Eggers G, et al. Piezosurgery: an ultrasound device for cutting bone and its use and limitations in maxillofacial surgery. Br J Oral Maxillofac Surg. 2004;42(5):451–3.

    Article  PubMed  Google Scholar 

  35. Gonzalez-Garcia A, et al. Ultrasonic osteotomy in oral surgery and implantology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(3):360–7.

    Article  PubMed  Google Scholar 

  36. Beziat JL, et al. Ultrasonic osteotomy as a new technique in craniomaxillofacial surgery. Int J Oral Maxillofac Surg. 2007;36(6):493–500.

    Article  PubMed  Google Scholar 

  37. Gleizal A, et al. Piezoelectric osteotomy: a new technique for bone surgery-advantages in craniofacial surgery. Childs Nerv Syst. 2007;23(5):509–13.

    Article  PubMed  Google Scholar 

  38. Degerliyurt K, et al. Bone lid technique with piezosurgery to preserve inferior alveolar nerve. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(6):e1–5.

    Article  PubMed  Google Scholar 

  39. Magrin GL, et al. Piezosurgery in bone augmentation procedures previous to dental implant surgery: a review of the literature. Open Dent J. 2015;9:426–30.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schaeren S, et al. Assessment of nerve damage using a novel ultrasonic device for bone cutting. J Oral Maxillofac Surg. 2008;66(3):593–6.

    Article  PubMed  Google Scholar 

  41. Wallace SS, et al. Schneiderian membrane perforation rate during sinus elevation using piezosurgery: clinical results of 100 consecutive cases. Int J Periodontics Restorative Dent. 2007;27(5):413–9.

    PubMed  Google Scholar 

  42. Gomez G, et al. Effects of piezoelectric units on pacemaker function: an in vitro study. J Endod. 2013;39(10):1296–9.

    Article  PubMed  Google Scholar 

  43. Schlee M, et al. Piezosurgery: basics and possibilities. Implant Dent. 2006;15(4):334–40.

    Article  PubMed  Google Scholar 

  44. Maurer P, et al. Micromorphometrical analysis of conventional osteotomy techniques and ultrasonic osteotomy at the rabbit skull. Clin Oral Implants Res. 2008;19(6):570–5.

    Article  PubMed  Google Scholar 

  45. Patel S, et al. Cone beam computed tomography in endodontics–a review. Int Endod J. 2015;48(1):3–15.

    Article  PubMed  Google Scholar 

  46. Mayo CV Jr, et al. Accuracy of Presurgical limited field of view cone-beam computed tomography in predicting intraoperative buccal cortical bone. J Endod. 2020;46(2):169–177 e1.

    Article  PubMed  Google Scholar 

  47. Low KM, et al. Comparison of periapical radiography and limited cone-beam tomography in posterior maxillary teeth referred for apical surgery. J Endod. 2008;34(5):557–62.

    Article  PubMed  Google Scholar 

  48. Wang X, et al. Relationship between the mental foramen, Mandibular Canal, and the surgical access line of the mandibular posterior teeth: a cone-beam computed tomographic analysis. J Endod. 2017;43(8):1262–6.

    Article  PubMed  Google Scholar 

  49. Krennmair S, et al. Risk factor analysis affecting sinus membrane perforation during lateral window maxillary sinus elevation surgery. Int J Oral Maxillofac Implants. 2020;35(4):789–98.

    Article  PubMed  Google Scholar 

  50. Sivolella S, et al. The bone lid technique in oral surgery: a case series study. Int J Oral Maxillofac Surg. 2017;46(11):1490–6.

    Article  PubMed  Google Scholar 

  51. Skoglund A, Persson G. A follow-up study of apicoectomized teeth with total loss of the buccal bone plate. Oral Surg Oral Med Oral Pathol. 1985;59(1):78–81.

    Article  PubMed  Google Scholar 

  52. Horton JE, Tarpley TM Jr, Wood LD. The healing of surgical defects in alveolar bone produced with ultrasonic instrumentation, chisel, and rotary bur. Oral Surg Oral Med Oral Pathol. 1975;39(4):536–46.

    Article  PubMed  Google Scholar 

  53. Horton JE, Tarpley TM Jr, Jacoway JR. Clinical applications of ultrasonic instrumentation in the surgical removal of bone. Oral Surg Oral Med Oral Pathol. 1981;51(3):236–42.

    Article  PubMed  Google Scholar 

  54. Stubinger S, et al. Intraoral piezosurgery: preliminary results of a new technique. J Oral Maxillofac Surg. 2005;63(9):1283–7.

    Article  PubMed  Google Scholar 

  55. Kotrikova B, et al. Piezosurgery–a new safe technique in cranial osteoplasty? Int J Oral Maxillofac Surg. 2006;35(5):461–5.

    Article  PubMed  Google Scholar 

  56. Happe A. Use of a piezoelectric surgical device to harvest bone grafts from the mandibular ramus: report of 40 cases. Int J Periodontics Restorative Dent. 2007;27(3):241–9.

    PubMed  Google Scholar 

  57. Sakkas N, et al. Transposition of the mental nerve by piezosurgery followed by postoperative neurosensory control: a case report. Br J Oral Maxillofac Surg. 2008;46(4):270–1.

    Article  PubMed  Google Scholar 

  58. Sivolella S, et al. Retrieval of blade implants with piezosurgery: two clinical cases. Minerva Stomatol. 2007;56(1–2):53–61.

    PubMed  Google Scholar 

  59. Wang N, et al. Treatment outcome in endodontics-the Toronto study. Phases I and II: apical surgery. J Endod. 2004;30(11):751–61.

    Article  PubMed  Google Scholar 

  60. Barone C, et al. Treatment outcome in endodontics: the Toronto study–phases 3, 4, and 5: apical surgery. J Endod. 2010;36(1):28–35.

    Article  PubMed  Google Scholar 

  61. von Arx T, Jensen SS, Hanni S. Clinical and radiographic assessment of various predictors for healing outcome 1 year after periapical surgery. J Endod. 2007;33(2):123–8.

    Article  Google Scholar 

  62. Lustmann J, Friedman S, Shaharabany V. Relation of pre- and intraoperative factors to prognosis of posterior apical surgery. J Endod. 1991;17(5):239–41.

    Article  PubMed  Google Scholar 

  63. von Arx T, Hanni S, Jensen SS. Correlation of bone defect dimensions with healing outcome one year after apical surgery. J Endod. 2007;33(9):1044–8.

    Article  Google Scholar 

  64. Misch CM. Maxillary autogenous bone grafting. Dent Clin N Am. 2011;55(4):697–713.

    Article  PubMed  Google Scholar 

  65. Pradel W, Eckelt U, Lauer G. Bone regeneration after enucleation of mandibular cysts: comparing autogenous grafts from tissue-engineered bone and iliac bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):285–90.

    Article  PubMed  Google Scholar 

  66. Arabiun H, et al. Effects of different storage media, temperature, and time on osteoblast preservation in autogenous bone grafts: a Histomorphometrical analysis. J Dent (Shiraz). 2020;21(3):225–33.

    PubMed  Google Scholar 

  67. Dechichi P, et al. Histomorphometric analysis of rabbit calvarial bone: storage in saline solution versus storage in platelet-poor plasma. Int J Oral Maxillofac Implants. 2007;22(6):905–10.

    PubMed  Google Scholar 

  68. Laursen M, et al. Optimal handling of fresh cancellous bone graft: different peroperative storing techniques evaluated by in vitro osteoblast-like cell metabolism. Acta Orthop Scand. 2003;74(4):490–6.

    Article  PubMed  Google Scholar 

  69. Rocha FS, et al. Effect of different storage media on the regenerative potential of autogenous bone grafts: a histomorphometrical analysis in rabbits. J Oral Implantol. 2013;39(6):635–42.

    Article  PubMed  Google Scholar 

  70. Kamijou T, Ozawa H. Effects of osteocytes on osteoinduction in the autogenous rib graft in the rat mandible, vol. 15. Bone; 1994. p. 629–37.

    Google Scholar 

  71. Gu G, Peng Z, Hentunen TA, Vaananen HK. Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption. Biochem Biophys Res Commun. 2005;335:1095–101.

    Article  PubMed  Google Scholar 

  72. Mouraret S, et al. Cell viability after osteotomy and bone harvesting: comparison of piezoelectric surgery and conventional bur. Int J Oral Maxillofac Surg. 2014;43(8):966–71.

    Article  PubMed  Google Scholar 

  73. Schweiberer L, et al. Revascularization of the tibia after conservative and surgical fracture fixation. Hefte Unfallheilkd. 1974;119:18–26.

    Google Scholar 

  74. Laird WR, Walmsley AD. Ultrasound in dentistry. Part 1–Biophysical interactions. J Dent. 1991;19(1):14–7.

    Article  PubMed  Google Scholar 

  75. Stubinger S, et al. Ultrasonic bone cutting in oral surgery: a review of 60 cases. Ultraschall Med. 2008;29(1):66–71.

    PubMed  Google Scholar 

  76. Torrella F, et al. Ultrasonic ostectomy for the surgical approach of the maxillary sinus: a technical note. Int J Oral Maxillofac Implants. 1998;13(5):697–700.

    PubMed  Google Scholar 

  77. Gruber RM, et al. Ultrasonic surgery–an alternative way in orthognathic surgery of the mandible. A pilot study. Int J Oral Maxillofac Surg. 2005;34(6):590–3.

    Article  PubMed  Google Scholar 

  78. Gonzalez-Garcia A, et al. Piezoelectric bone surgery applied in alveolar distraction osteogenesis: a technical note. Int J Oral Maxillofac Implants. 2007;22(6):1012–6.

    PubMed  Google Scholar 

  79. Vercellotti T. Technological characteristics and clinical indications of piezoelectric bone surgery. Minerva Stomatol. 2004;53(5):207–14.

    PubMed  Google Scholar 

  80. Schaller BJ, et al. Piezoelectric bone surgery: a revolutionary technique for minimally invasive surgery in cranial base and spinal surgery? Technical note. Neurosurgery. 2005;57(4 Suppl):E410. discussion E410

    PubMed  Google Scholar 

  81. Budd JC, Gekelman D, White JM. Temperature rise of the post and on the root surface during ultrasonic post removal. Int Endod J. 2005;38(10):705–11.

    Article  PubMed  Google Scholar 

  82. Robiony M, et al. Piezoelectric bone cutting in multipiece maxillary osteotomies. J Oral Maxillofac Surg. 2004;62(6):759–61.

    Article  PubMed  Google Scholar 

  83. Strbac GD, et al. Guided modern endodontic surgery: a novel approach for guided osteotomy and root resection. J Endod. 2017;43(3):496–501.

    Article  PubMed  Google Scholar 

  84. Giacomino CM, Ray JJ, Wealleans JA. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases. J Endod. 2018;44(4):671–7.

    Article  PubMed  Google Scholar 

  85. Ahn SY, et al. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate. J Endod. 2018;44(4):665–70.

    Article  PubMed  Google Scholar 

  86. Benjamin G, et al. Preserving the neurovascular bundle in targeted endodontic microsurgery: a case series. J Endod. 2021;47(3):509–19.

    Article  PubMed  Google Scholar 

  87. Khambay BS, Walmsley AD. Investigations into the use of an ultrasonic chisel to cut bone. Part 2: cutting ability. J Dent. 2000;28(1):39–44.

    Article  PubMed  Google Scholar 

  88. Leclercq P, Zenati C, Dohan DM. Ultrasonic bone cut part 2: state-of-the-art specific clinical applications. J Oral Maxillofac Surg. 2008;66(1):183–8.

    Article  PubMed  Google Scholar 

  89. Popowicz W, Palatynska-Ulatowska A, Kohli MR. Targeted endodontic microsurgery: computed tomography-based guided stent approach with platelet-rich fibrin graft: a report of 2 cases. J Endod. 2019;45(12):1535–42.

    Article  PubMed  Google Scholar 

  90. Fan Y, et al. A novel prefabricated grid for guided endodontic microsurgery. J Endod. 2019;45(5):606–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niemczyk, S.P. (2023). The Use of Cone Beam Computed Tomography in Piezosurgery and Static Navigation (PRESS). In: Fayad, M.I., Johnson, B.R. (eds) 3D Imaging in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-031-32755-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32755-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32754-4

  • Online ISBN: 978-3-031-32755-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics