Skip to main content

Three-Dimensional Evaluation of Internal Tooth Anatomy

  • Chapter
  • First Online:
3D Imaging in Endodontics
  • 166 Accesses

Abstract

The study of human tooth anatomy is fundamental to clinical endodontics. Several histologic methods used to evaluate tooth anatomy have been described for the purpose of identification and categorization of various root and root canal types. In addition, multiple publications have attempted to classify root and root canal configuration as it relates to tooth type, tooth location, root type, gender, geographic location, and ethnic background. For decades, two-dimensional radiography (captured at various angulations) has been the primary method for evaluating tooth anatomy before endodontic treatment. Attempting to assess multidimensional anatomy from planar imaging has significant limitations. Technological advancements in three-dimensional tomographic imaging have given rise to a more accurate method for the preoperative clinical evaluation of tooth anatomy. Cone beam computed tomography (CBCT) provides a non-destructive real-time capture of three-dimensional anatomic and morphologic information. A short acquisition time and a level of detail equivalent to that of in vitro tooth sectioning make CBCT imaging the first and currently only practical method available for the accurate, undistorted, chair-side evaluation of tooth anatomy in three spatial planes prior to initiating root canal treatment.

William J. Nudera: Author of NUENDO ReThinking Endodontics, A Systematic Approach to Diagnosis and Case Selection, Published by EDRA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walton WE, Vertucci FJ. Internal anatomy. In: Walton WE, Torabinejad M, editors. Principles and practice of endodontics. 3rd ed. Philadelphia: Saunders; 2002. p. 176–81.

    Google Scholar 

  2. Hess W. Formation of root canals in human teeth II. J Nat Dental Assoc. 1921;8:790–832.

    Article  Google Scholar 

  3. Gutmann JL, Fan B. Tooth morphology, isolation, and access. In: Hargreaves KM, Berman LH, editors. Cohen’s pathways of the pulp. 11th ed. St. Louis: Elsevier; 2016. p. 130–208.

    Google Scholar 

  4. Grover C, Shetty N. Methods to study root canal morphology: a review. In: Bonaccorso A, Chong BS, Schafer E, van der Sluis L, editors. ENDO—endodontic practice today. 2012; 6(3):171–188.

    Google Scholar 

  5. Gomes BP, Rodrigues H, Tancredo N. The use of modeling technique to investigate the root canal morphology of mandibular incisors. Int Endod J. 1996;29:29–36.

    Article  PubMed  Google Scholar 

  6. Eder A, Kantor M, Moser T, Gahleitner A, Schedle A, Sperr W. Root canal system in the mesiobuccal root of the maxillary first molar: and in vitro comparison study of computer tomography and histology. Dentinomax Radiol. 2006;35:175–7.

    Article  Google Scholar 

  7. Michetti J, Maret D, Mallet JP, Diemer F. Validation of come beam computed tomography as a tool to explore root canal anatomy. J Endod. 2010;36:1187–90.

    Article  PubMed  Google Scholar 

  8. Neelakantan P, Subbarao C, Subbarao CV. Comparative evaluation of modified canal clearing technique, cone beam computed tomography, peripheral quantitative computed tomography, spiral computed tomography, and plain and contrast medium-enhances digital radiography in studying root canal morphology. J Endod. 2010;36:1547–51.

    Article  PubMed  Google Scholar 

  9. Blattner TC, George N, Lee CC, Kumar V, Yelton DJ. Efficacy of cone beam computed tomography as a modality to accurately identify the presence of second mesiobuccal canals in maxillary first and second molars: a pilot study. J Endod. 2010;36:867–79.

    Article  PubMed  Google Scholar 

  10. Teary S, Luzon J, Hartwell G. Endodontic radiography: who is reading the digital radiograph? J Endod. 2011;37:919–21.

    Article  Google Scholar 

  11. Weine FS, Healey HJ, Gerstein H, Evanson L. Canal configuration in the mesiobuccal root of the maxillary first molar and its endodontic significance. Oral Surg Oral Med Oral Pathol. 1969;28:419–25.

    Article  PubMed  Google Scholar 

  12. Gulabivala K, Aung TH, Ng YL. Root and canal morphology of Burmese mandibular molars. Int Endod J. 2001;34(5):359–70.

    Article  PubMed  Google Scholar 

  13. Sert S, Bayiril GS. Evaluation of root canal configurations of the mandibular and maxillary permanent teeth by gender in the Turkish population. J Endod. 2004;30:391–8.

    Article  PubMed  Google Scholar 

  14. Krasner P, Rankow HJ. Anatomy of the pulp chamber floor. J Endod. 2004;30:5–16.

    Article  PubMed  Google Scholar 

  15. Patel S, Dawood A, Whaites E, Pitt FT. New dimensions in endodontic imaging: part 1: conventional and alternative radiographic systems. Int Endod J. 2009;42:447–62.

    Article  PubMed  Google Scholar 

  16. Estrela C, Bueno MR, Sousa-Neto MD, Pecora JD. Method for determination of root curvature radius using cone-beam computed tomography images. Braz Dent J. 2008;19:114–8.

    Article  PubMed  Google Scholar 

  17. Scarfe WC, Farman AG, Sukovic P. Clinical applications if cone-beam computed tomography in dental practice. J Can Dent Assoc. 2006;72:75–80.

    PubMed  Google Scholar 

  18. Ee J, Fayad MI, Johnson BR. Comparison of endodontic diagnosis and treatment planning decisions using cone-beam volumetric tomography versus periapical radiography. J Endod. 2014;40:910–6.

    Article  PubMed  Google Scholar 

  19. Rodriguez G, Abella F, Duran-Sindreu F, Patel S, Roig M. Influence of cone-beam computed tomography in clinical decision making among specialists. J Endod. 2017;43:194–9.

    Article  PubMed  Google Scholar 

  20. Vizzotto MB, Silveira PF, Arus NA, Montagner F, Gomes BO, da Silveira HE. CBCT for the assessment of second mesiobuccal (MB2) canals in maxillary molar teeth: effect of voxel size and presence of root filling. Int Endod J. 2013;46:870–6.

    Article  PubMed  Google Scholar 

  21. von Zuben M, Martins JN, Berti L, et al. Worldwide prevalence of mandibular second molar C- shaped morphologies evaluated by cone-beam computed tomography. J Endod. 2017;43:1442–7.

    Article  Google Scholar 

  22. Martins JNR, et al. Worldwide prevalence of a lingual canal in mandibular premolars: a multicenter cross-sectional study with meta-analysis. J Endod. 2021;47:1253–64.

    Article  PubMed  Google Scholar 

  23. Kotoor J, Velmurugan N, Sudha R, Hemamalathi S. Maxillary first molar with seven root canals diagnosed with cone-beam computed tomography: a case report. J Endod. 2010;36:915–21.

    Article  Google Scholar 

  24. Zoya-Farook A, Abhishek P, Shahabadi A. Cone-beam computed tomographic evaluation and endodontic management of a mandibular first premolar with type IX canal configuration: case report. J Endod. 2017;43:1207–13.

    Article  PubMed  Google Scholar 

  25. Ring J, Ring KC. Rare root canal configuration of mandibular second premolar using cone-beam computed tomographic scanning. J Endod. 2017;43:1897–900.

    Article  PubMed  Google Scholar 

  26. Kulild JC, Peters DD. Incidence and configuration of canal systems in the mesiobuccal root of maxillary first and second molars. J Endod. 1990;16:311–6.

    Article  PubMed  Google Scholar 

  27. Martins JNR, et al. Worldwide analyses of maxillary first molar second mesiobuccal prevalence: a multicenter cone-beam computed tomographic study. J Endod. 2018;44:1641–9.

    Article  PubMed  Google Scholar 

  28. Zhang Q, Chen H, Fan B, Fan W, Gutmann J. Root and root canal morphologies in maxillary second molar with fused root from a native Chinese population. J Endod. 2014;40:871–85.

    Article  PubMed  Google Scholar 

  29. Martins JNR, Mata A, Marques D, Carames J. Prevalence of root fusions and main root canal merging inhuman upper and lower molars—a CBCT in vivo study. J Endod. 2016;42:900–8.

    Article  PubMed  Google Scholar 

  30. Ordinola-Zapata R, Martins JNR, Bramante CM, Villas-Boas MH, Duarte MH, Versiani MA. Morphological evaluation of maxillary second molars with fused roots: a micro-CT study. Int Endod J. 2017;50:1–9.

    Article  Google Scholar 

  31. Al Shalabi RM, Omer OE, Glennon J, et al. Root canal anatomy of maxillary first and second permanent molars. Int Endod J. 2000;33:405–14.

    Article  PubMed  Google Scholar 

  32. Wasti F, Shearer AC, Wilson NH. Root canal systems of the mandibular and maxillary first permanent molar teeth of south Asian Pakistanis. Int Endod J. 2001;34:263–6.

    Article  PubMed  Google Scholar 

  33. Kartal N, Ozcelik B, Cimilli H. Root canal morphology of maxillary premolars. J Endod. 1998;24:417–9.

    Article  PubMed  Google Scholar 

  34. Beltes P, Kalaitzoglou ME, Kantilieraki E, Beltes C, Angelopoulos C. 3-rooted maxillary first premolars: and ex vivo study of external and internal morphologies. J Endod. 2017;43:1267–72.

    Article  PubMed  Google Scholar 

  35. Wolf TG, Kozaczek C, Campus G, Paque F, Wierichs RJ. Root canal morphology of 116 maxillary second premolars by micro-computed tomography in a mixed Swiss-German population with systematic review. J Endod. 2020;46:1639–47.

    Article  PubMed  Google Scholar 

  36. De Moor R, Deroose C, Calberson F. The radix entomolaris in mandibular first molars: an endodontic challenge. Int Endod J. 2004;37:789–99.

    Article  PubMed  Google Scholar 

  37. Jin GC, Lee SJ, Roh BD. Anatomical study of C-shaped canals in mandibular second molars by analysis of computed tomography. J Endod. 2006;32:10–3.

    Article  PubMed  Google Scholar 

  38. Chai WL, Thong YL. Cross sectional morphology and minimum canal wall widths in c-shaped roots of mandibular molars. J Endod. 2004;30:509–12.

    Article  PubMed  Google Scholar 

  39. Weinberg EM, Pedra AE, Khurana S, Lotikar PP, Falcon C, Hirschberg C. Incidence of middle mesial canals based on distance between mesial canal orifices in mandibular molars: a clinical and cone-beam computed tomographic analysis. J Endod. 2020;46:40–3.

    Article  PubMed  Google Scholar 

  40. Tahmasbi M, Jalali P, Nair MK, Bargham S, Nair UP. Prevalence of middle mesial canals and isthmi in the mesial root of mandibular molars: and in vivo cone-beam computed tomographic study. J Endod. 2017;43:1080–3.

    Article  PubMed  Google Scholar 

  41. Azim AA, Deutsch AS, Solomon CS. Prevalence of middle mesial canals in mandibular molars after guided troughing under high magnification: an in vivo investigation. J Endod. 2015;41:164–8.

    Article  PubMed  Google Scholar 

  42. Ahmed HA, Abubakr NH, Yahia NA, Ibrahim YE. Root and canal morphology of permanent mandibular molars in a Sudanese population. Int Endod J. 2007;40:766–71.

    Article  PubMed  Google Scholar 

  43. La SH, Jung DH, Kim EC, Min KS. Identification of independent middle mesial canal in mandibular first molar using cone-beam computed tomography imaging. J Endod. 2010;237:1–4.

    Google Scholar 

  44. Slowey RR. Radiographic aids in the detection of extra root canals. Oral Surg Oral Med Oral Pathol. 1974;37:762–72.

    Article  PubMed  Google Scholar 

  45. Boruah LC, Bhuyan AC. Morphologic characteristics of root canal of mandibular incisors in North-East Indian population: an in vitro study. J Conserv Dent. 2011;14:346–50.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Leoni GB, Versiani MA, Pecora JD, de Sousa-Neto MD. Micro-computed tomographic analysis of the root canal morphology of mandibular incisors. J Endod. 2014;40:710–6.

    Article  PubMed  Google Scholar 

  47. Souza RA, Figueiredo JAP, Colombo S, Dantas JCP, Lago M, Pecora JD. Location of the apical foramen and its relationship with foramina file size. Dental Press Endod. 2011;1:64–8.

    Article  Google Scholar 

  48. van der Vyver PJ, Vorster M, Palerker F, de Wet FA. Errors in root canal preparation: a review of the literature and clinical case reports. SADJ. 2019;74:246–54.

    Google Scholar 

  49. Alani A, Bishop K. Dens invaginatus: part 1—classification, prevalence and aetiology. Int Endod J. 2008;41:1123–36.

    Article  PubMed  Google Scholar 

  50. Siqueria JF, Rocas IN, Hernandez SR, Brissin-Suarez K, Baasch AC, Perez AR, Alvez FRF. Dens invaginatus: clinical implications and antimicrobial endodontic treatment considerations. J Endod. 2022;48:161–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nudera, W.J. (2023). Three-Dimensional Evaluation of Internal Tooth Anatomy. In: Fayad, M.I., Johnson, B.R. (eds) 3D Imaging in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-031-32755-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32755-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32754-4

  • Online ISBN: 978-3-031-32755-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics