Skip to main content

Monoidal Strengthening and Unique Lifting in MIQCPs

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13904))

Abstract

Using the recently proposed maximal quadratic-free sets and the well-known monoidal strengthening procedure, we show how to improve intersection cuts for quadratically-constrained optimization problems by exploiting integrality requirements. We provide an explicit construction that allows an efficient implementation of the strengthened cuts along with computational results showing their improvements over the standard intersection cuts. We also show that, in our setting, there is unique lifting which implies that our strengthening procedure is generating the best possible cut coefficients for the integer variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    With a slight abuse of notation, we refer to a non-convex set \(C - M\) as S-free whenever the convex set \(C - m\) is S-free for every \(m \in M\).

  2. 2.

    A function \(\psi \) is subadditive if \(\psi (x+y) \le \psi (x) + \psi (y)\).

  3. 3.

    This means that if \(\rho \) is such that \(C = \{ s \in \mathbb {R}^p \,:\,\rho (s - f) \le 1\}\) then \(\rho (s) \ge \phi (s)\).

  4. 4.

    This citation deals with a particular set S, but the proof can be easily extended to any conic set S.

  5. 5.

    Note that \(S^{g}\) is contained on a halfspace, so \(S^{g}\)-freeness is with respect to the induced topology in \(H\).

References

  1. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4(4), 224–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basu, A., Campelo, M., Conforti, M., Cornuéjols, G., Zambelli, G.: Unique lifting of integer variables in minimal inequalities. Math. Program. 141(1–2), 561–576 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Basu, A., Dey, S.S., Paat, J.: Nonunique lifting of integer variables in minimal inequalities. SIAM J. Discret. Math. 33(2), 755–783 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0. ZIB-Report 21–41, Zuse Institute Berlin, December 2021

    Google Scholar 

  6. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial optimization and oracle-based cuts. Math. Program. 1–44 (2020)

    Google Scholar 

  7. Chmiela, A., Muñoz, G., Serrano, F.: Monoidal strengthening and unique lifting in MIQCPs (2022). https://www.gonzalomunoz.org/publications/

  8. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of intersection cuts for QCQPs. Math. Program. pp. 1–38 (2022)

    Google Scholar 

  9. Conforti, M., Cornuéjols, G., Zambelli, G.: A geometric perspective on lifting. Oper. Res. 59(3), 569–577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program. 124(1–2), 143–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fukasawa, R., Poirrier, L., Xavier, Á.S.: The (not so) trivial lifting in two dimensions. Math. Program. Comput. 11(2), 211–235 (2018). https://doi.org/10.1007/s12532-018-0146-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Furini, F., et al.: A library of quadratic programming instances. Programming Computation, QPLIB (2018)

    Google Scholar 

  13. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. MINLP library (2010). http://www.minlplib.org/

  15. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 307–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6_24

    Chapter  Google Scholar 

  16. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. Math. Program. 1–42 (2021)

    Google Scholar 

  17. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  18. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope. SIAM J. Optim. 30(4), 2983–2997 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chmiela, A., Muñoz, G., Serrano, F. (2023). Monoidal Strengthening and Unique Lifting in MIQCPs. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32726-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32725-4

  • Online ISBN: 978-3-031-32726-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics