Skip to main content

A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2023)

Abstract

We consider the bilevel knapsack problem with interdiction constraints, a fundamental bilevel integer programming problem which generalizes the 0-1 knapsack problem. In this problem, there are two knapsacks and n items. The objective is to select some items to pack into the first knapsack such that the maximum profit attainable from packing some of the remaining items into the second knapsack is minimized. We present a combinatorial branch-and-bound algorithm which outperforms the current state-of-the-art solution method in computational experiments by 4.5 times on average for all instances reported in the literature. On many of the harder instances, our algorithm is hundreds of times faster, and we solved 53 of the 72 previously unsolved instances. Our result relies fundamentally on a new dynamic programming algorithm which computes very strong lower bounds. This dynamic program solves a relaxation of the problem from bilevel to 2n-level where the items are processed in an online fashion. The relaxation is easier to solve but approximates the original problem surprisingly well in practice. We believe that this same technique may be useful for other interdiction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: A study on the computational complexity of the bilevel knapsack problem. SIAM J. Optim. 24(2), 823–838 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: Bilevel knapsack with interdiction constraints. INFORMS J. Comput. 28(2), 319–333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, L., Wu, X., Zhang, G.: Approximation algorithms for interdiction problem with packing constraints. arXiv preprint arXiv:2204.11106 (2022)

  4. Della Croce, F., Scatamacchia, R.: An exact approach for the bilevel knapsack problem with interdiction constraints and extensions. Math. Program. 183(1), 249–281 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dempe, S.: Bilevel optimization: theory, algorithms, applications and a bibliography. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161, pp. 581–672. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6_20

    Chapter  MATH  Google Scholar 

  6. DeNegre, S.: Interdiction and discrete bilevel linear programming, Ph. D. thesis, Lehigh University (2011)

    Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischetti, M., Ljubic, I., Monaci, M., Sinnl, M.: Interdiction games and monotonicity, with application to knapsack problems. INFORMS J. Comput. 31, 390–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischetti, M., Monaci, M., Sinnl, M.: A dynamic reformulation heuristic for generalized interdiction problems. Eur. J. Oper. Res. 267, 40–51 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fontan, F.: Knapsack solver (Github repository). https://github.com/fontanf/knapsacksolver (2017)

  12. Kleinert, T., Labbé, M., Ljubić, I., Schmidt, M.: A survey on mixed-integer programming techniques in bilevel optimization. EURO J. Comput. Optimiz. 9, 100007 (2021)

    Article  MathSciNet  Google Scholar 

  13. Lozano, L., Bergman, D., Cire, A.A.: Constrained shortest-path reformulations for discrete bilevel and robust optimization. arXiv preprint arXiv:2206.12962 (2022)

  14. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack problem. Manage. Sci. 45(3), 414–424 (1999)

    Article  MATH  Google Scholar 

  15. Pisinger, D.: An expanding-core algorithm for the exact 0–1 knapsack problem. Eur. J. Oper. Res. 87(1), 175–187 (1995)

    Article  MATH  Google Scholar 

  16. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32, 2271–2284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms. Eur. J. Oper. Res. 283(3), 797–811 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tahernejad, S., Ralphs, T.K., DeNegre, S.T.: A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation. Math. Program. Comput. 12(4), 529–568 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tang, Y., Richard, J.P.P., Smith, J.C.: A class of algorithms for mixed-integer bilevel min-max optimization. J. Global Optim. 66, 225–262 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Weninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weninger, N., Fukasawa, R. (2023). A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32726-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32725-4

  • Online ISBN: 978-3-031-32726-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics