Abstract
This paper deals with the possibility of low-cost on-line compensation for thermally induced error. The aim is to compensate the drift of the UR10e collaborative robot to the extent that the robot operates with the repeatability guaranteed by the manufacturer for the thermal steady state. Thus, the authors have developed a compensation system that predicts drift and, by applying it in the robot control, can reduce the difference in positioning between the cold and warm robot. A measurement nest equipped with confocal sensor and a pair of laser profilers was used to measure repeatability. The robot was also equipped with sensors for temperature detection. The tests were carried out under different conditions and ISO 9283:1998 standard was also considered. By applying the proposed methodology, drift can be compensated with a high degree of efficiency. In some measurements the drift was compensated completely, usually the compensation efficiency was around 90%. Thanks to the compensation system, it is not necessary to pre-warm the robot and, above all, it is possible to guarantee a predetermined level of repeatability regardless of the actual robot or ambient temperature.
Keywords
- Collaborative robot
- Repeatability
- Drift
- Robot warm-up
- Robot compensation
- Thermally induced error
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Nubiola, A., Slamani, M., Joubair, A., Bonev, I.A.: Comparison of two calibration methods for a small industrial robot based on an optical CMM and a laser tracker. Robotica 32(3), 447–466 (2014). https://doi.org/10.1017/S0263574713000714
Nubiola, A., Bonev, I.A.: Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Rob. Computer-Integrated Manuf. 29(1), 236–245 (2013). https://doi.org/10.1016/j.rcim.2012.06.004
Wu, Y., Klimchik, A., Caro, S., Furet, B., Pashkevich, A.: Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robot. Computer-Integrated Manuf. 35, 151–168 (2015). https://doi.org/10.1016/j.rcim.2015.03.007
Józwik, J., Ostrowski, D., Jarosz, P., Mika, D.: Industrial robot repeatability testing with high speed camera phantom V2511. Adv. Sci. Technol. Res. J. 10(32), 86–96 (2016). https://doi.org/10.12913/22998624/65136
Vocetka, M., Huňady, R., Hagara, M., Bobovský, Z., Kot, T., Krys, V.: Influence of the approach direction on the repeatability of an industrial robot. Appl. Sci. 10(23), 8714 (2020). https://doi.org/10.3390/app10238714
Filion, A., Joubair, A., Tahan, A.S., Bonev, I.A.: Robot calibration using a portable photogrammetry system. Robot. Computer-Integrated Manuf. 49, 77–87 (2018). https://doi.org/10.1016/j.rcim.2017.05.004
Moeller, C., et al.: Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system. SAE Int. J. Aerosp. 10(2), 100–108 (2017). https://doi.org/10.4271/2017-01-2165
Huczala, D., Oščádal, P., Spurný, T., Vysocký, A., Vocetka, M., Bobovský, Z.: Camera-based method for identification of the layout of a robotic workcell. Appl. Sci. 10(21), 7679 (2020). https://doi.org/10.3390/app10217679
Oščádal, P., et al.: Improved pose estimation of aruco tags using a novel 3D placement strategy. Sensors 20(17), 4825 (2020). https://doi.org/10.3390/s20174825
Kluz, R., Kubit, A., Trzepiecinski, T.: Investigations of temperature-induced errors in positioning of an industrial robot arm. J. Mech. Sci. Technol. 32(11), 5421–5432 (2018). https://doi.org/10.17531/ein.2018.4.1
Kluz, R., Kubit, A., Sęp, J., Trzepieciński, T.: Effect of temperature variation on repeatability positioning of a robot when assembling parts with cylindrical surfaces. Eksploatacja i Niezawodność – Maintenance Reliab. 20(4), 503–513 (2018). https://doi.org/10.17531/ein.2018.4.1
Vocetka, M., et al.: Influence of drift on robot repeatability and its compensation. Appl. Sci. 11(22), 10813 (2021). https://doi.org/10.3390/app112210813
UR10e Specification [online]. Energivej 25 5260, Odense, Denmark: Universal Robots A/S [cit. 2023–01–10]. Available from: https://www.universal-robots.com/media/1807466/ur10e-rgb-fact-sheet-landscape-a4-125-kg.pdf (2023)
Programmable Resolution 1-Wire Digital Thermometer: DS18B20 [online]. [cit. 2022–05–02]. Available from: https://www.maximintegrated.com/en/products/sensors/DS18B20.html
Konfokální laserový měřicí systém řady CL-3000: Hlava senzoru CL-L015 (15 mm, čtyřbodový typ) [online]. Bedrijvenlaan 5, 2800 Mechelen, Belgie: KEYENCE [cit. 2022-05-02]. Available from: https://www.keyence.eu/cscz/products/measure/laser-1d/cl-3000/models/cl-l015/
2D/3D Laser Profiler: LJ-X8000 series [online]. Avebury House, 219–225 Avebury Boulevard, Milton Keynes MK9 1AU, U.K.: Keyence [cit. 2021-10-04]. Available from: https://www.keyence.co.uk/products/measure/laser-2d/lj-x8000/models/lj-x8080/ (2021)
Heczko, D., Oščádal, P., Kot, T., Huczala, D., Semjon, J., Bobovský, Z.: Increasing the reliability of data collection of laser line triangulation sensor by proper placement of the sensor. Sensors 21(8), 2890 (2021). https://doi.org/10.3390/s21082890
Acknowledgement
This article has been elaborated with the support of the Research Centre of Advanced Mechatronic Systems project, reg. no. CZ.02.1.01/0.0/0.0/16_019/0000867 in the frame of the Operational Program Research, Development and Education and by specific research project SP2023/060, financed by the state budget of the Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vocetka, M. et al. (2023). UR10e Robot Drift Compensation for Precision Measurement Applications. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-32606-6_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-32606-6_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32605-9
Online ISBN: 978-3-031-32606-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)