Abstract
In this chapter, the method of producing a multiwalled carbon nanotube (MWCNT)-doped Polypropylene (PP) fine fibers via melt-blowing was demonstrated. The MWCNT-doped fiber mats were then applied as an interleaving veil to create hierarchical single-PP composites. The morphological, thermal and mechanical properties of the nanocomposite fibers are discussed. The effect of the nanocomposite fine fiber mat interleaving on the thermal and mechanical properties of the SPCs was systematically and comparatively investigated. Results implied that incorporating MWCNT increased the melt-blowing grade PP resin viscosity. Incorporating MWCNT enhanced the melt-blown (MB) PP fiber mat's specific strength by 78% and improved thermal stability. Hierarchical single-polypropylene composites (SPCs) were produced by film-stacking, for which a PP film was used as a matrix, a PP woven fabric was used as primary reinforcement, and the MB fiber mat was used as interleaves. Interleaving enhanced the SPC's tensile modulus by up to 37%. Interleaving of the MWCNT doped PP fiber mat provided a robust interfacial adhesion and higher damage tolerance under tensile load. Master curves were constructed from dynamic mechanical analysis (DMA) frequency sweep tests based on the timeātemperature-superposition (TTS) principle. Results revealed that the SPCs storage modulus increased by 33%, while the tanĪ“ decreased by around 10% with the interleaving PP/MWCNT fiber mat.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
ISO 527ā4:2021: Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites.
Wortmann, F.-J., Schulz, K.: Stress relaxation and time/temperature superposition of polypropylene fibres. Polymer 36(2), 315ā321 (1995). https://doi.org/10.1016/0032-3861(95)91319-3
Faghihi, M., Shojaei, A., Bagheri, R.: Characterization of polyamide 6/carbon nanotube composites prepared by melt mixing-effect of matrix molecular weight and structure. Compos. B Eng. 78, 50ā64 (2015). https://doi.org/10.1016/j.compositesb.2015.03.049
Kasaliwal, G.R., Gƶldel, A., Pƶtschke, P., Heinrich, G.: Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer 52(4), 1027ā1036 (2011). https://doi.org/10.1016/j.polymer.2011.01.007
Petrova, I., Kotsilkova, R., Ivanov, E., Kuzhir, P., Bychanok, D., Kouravelou, K., Karachalios, T., Soto Beobide, A., Voyiatzis, G., Codegoni, D.: Nanoscale reinforcement of polypropylene composites with carbon nanotubes and clay: Dispersion state, electromagnetic and nanomechanical properties. Polym. Eng. Sci. 56(3), 269ā277 (2016). https://doi.org/10.1002/pen.24247
Pƶtschke, P., Mothes, F., Krause, B., Voit, B.: Melt-Mixed PP/MWCNT Composites: Influence of CNT Incorporation Strategy and Matrix Viscosity on Filler Dispersion and Electrical Resistivity. Polymers 11(2), 189 (2019). https://doi.org/10.3390/polym11020189
MiÄuÅ”Ćk, M., OmastovĆ”, M., Krupa, I., ProkeÅ”, J., Pissis, P., Logakis, E., Pandis, C., Pƶtschke, P., Pionteck, J.: A comparative study on the electrical and mechanical behaviour of multi-walled carbon nanotube composites prepared by diluting a masterbatch with various types of polypropylenes. J. Appl. Polym. Sci. 113(4), 2536ā2551 (2009). https://doi.org/10.1002/app.30418
Wang, P.-H., Sarkar, S., Gulgunje, P., Verghese, N., Kumar, S.: Structure and rheological behavior of polypropylene interphase at high carbon nanotube concentration. Polymer 150, 10ā25 (2018). https://doi.org/10.1016/j.polymer.2018.06.050
Shieh, Y.T., Liu, G.L.: Effects of carbon nanotubes on crystallization and melting behavior of poly (L-lactide) via DSC and TMDSC studies. J. Polym. Sci., Part B: Polym. Phys. 45(14), 1870ā1881 (2007). https://doi.org/10.1002/polb.21184
Wang, J., Kazemi, Y., Wang, S., Hamidinejad, M., Mahmud, M.B., Pƶtschke, P., Park, C.B.: Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. Compos. B Eng. 183, 107663 (2020). https://doi.org/10.1016/j.compositesb.2019.107663
Xin, S., Wang, X.: Shear flow of molten polymer in melt blowing. Polym. Eng. Sci. 52(6), 1325ā1331 (2012). https://doi.org/10.1002/pen.23079
Nayak, R., Padhye, R., Arnold, L., Kyratzis, I.L., Truong, Y.B., Peeters, G., Nichols, L., OāShea, M.: Mechanism of Nanofibre Fabrication by Meltblowing. Appl. Mech. Mater. 217ā219, 207ā212 (2012). https://doi.org/10.4028/www.scientific.net/AMM.217-219.207
Henry, J.J., Goldbach, J., Stabler, S., Devisme, S., Chauveau, J.: Advancements in the production of meltblown fibres. Filtration + Separation 53(3), 36ā40 (2016). https://doi.org/10.1016/S0015-1882(16)30123-9
Tsioptsias, C., Leontiadis, K., Tzimpilis, E., Tsivintzelis, I.: Polypropylene nanocomposite fibers: A review of current trends and new developments. J. Plast. Film Sheeting 37(3), 283ā311 (2021). https://doi.org/10.1177/8756087920972146
Jose, M.V., Dean, D., Tyner, J., Price, G., Nyairo, E.: Polypropylene/carbon nanotube nanocomposite fibers: Processāmorphologyāproperty relationships. J. Appl. Polym. Sci. 103(6), 3844ā3850 (2007). https://doi.org/10.1002/app.25475
Ivanov, E., Kotsilkova, R.: Reinforcement Effects of Carbon Nanotubes in Polypropylene: Rheology, Structure, Thermal Stability, and Nano-, Micro-, and Macromechanical Properties. In: Makhlouf, A.S.H., Scharnweber, D. (eds.) Handbook of Nanoceramic and Nanocomposite Coatings and Materials, pp. 357ā388. Butterworth-Heinemann, United Kingdom (2015)
Hegde, R.R., Bhat, G.S.: Nanoparticle effects on structure and properties of polypropylene meltblown webs. J. Appl. Polym. Sci. 115(2), 1062ā1072 (2010). https://doi.org/10.1002/app.31089
Yetgin, S.H.: Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. J. Market. Res. 8(5), 4725ā4735 (2019). https://doi.org/10.1016/j.jmrt.2019.08.018
Yu, K., Liu, Y., Leng, J.: Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv. 4(6), 2961ā2968 (2014). https://doi.org/10.1039/C3RA43258K
Moore, E.M., Ortiz, D.L., Marla, V.T., Shambaugh, R.L., Grady, B.P.: Enhancing the strength of polypropylene fibers with carbon nanotubes. J. Appl. Polym. Sci. 93(6), 2926ā2933 (2004). https://doi.org/10.1002/app.20703
Leelapornpisit, W., Ton-That, M.-T., Perrin-Sarazin, F., Cole, K.C., Denault, J., Simard, B.: Effect of carbon nanotubes on the crystallization and properties of polypropylene. J. Polym. Sci., Part B: Polym. Phys. 43(18), 2445ā2453 (2005). https://doi.org/10.1002/polb.20527
Lozano, K., Barrera, E.: Nanofiberāreinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J. Appl. Polymer Sci. 79(1), 125ā133 (2001). https://doi.org/10.1002/1097-4628(20010103)79:1
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kara, Y. (2023). Development of Multiwalled Carbon Nanotube Doped Polypropylene Melt-Blown Fiber Mat Interleaved Hierarchical Single-Polypropylene Composites. In: Polypropylene Melt-Blown Fiber Mats and Their Composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-32577-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-32577-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32576-2
Online ISBN: 978-3-031-32577-9
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)