Skip to main content

Development of Multiwalled Carbon Nanotube Doped Polypropylene Melt-Blown Fiber Mat Interleaved Hierarchical Single-Polypropylene Composites

  • Chapter
  • First Online:
Polypropylene Melt-Blown Fiber Mats and Their Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 113 Accesses

Abstract

In this chapter, the method of producing a multiwalled carbon nanotube (MWCNT)-doped Polypropylene (PP) fine fibers via melt-blowing was demonstrated. The MWCNT-doped fiber mats were then applied as an interleaving veil to create hierarchical single-PP composites. The morphological, thermal and mechanical properties of the nanocomposite fibers are discussed. The effect of the nanocomposite fine fiber mat interleaving on the thermal and mechanical properties of the SPCs was systematically and comparatively investigated. Results implied that incorporating MWCNT increased the melt-blowing grade PP resin viscosity. Incorporating MWCNT enhanced the melt-blown (MB) PP fiber mat's specific strength by 78% and improved thermal stability. Hierarchical single-polypropylene composites (SPCs) were produced by film-stacking, for which a PP film was used as a matrix, a PP woven fabric was used as primary reinforcement, and the MB fiber mat was used as interleaves. Interleaving enhanced the SPC's tensile modulus by up to 37%. Interleaving of the MWCNT doped PP fiber mat provided a robust interfacial adhesion and higher damage tolerance under tensile load. Master curves were constructed from dynamic mechanical analysis (DMA) frequency sweep tests based on the timeā€“temperature-superposition (TTS) principle. Results revealed that the SPCs storage modulus increased by 33%, while the tanĪ“ decreased by around 10% with the interleaving PP/MWCNT fiber mat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO 527ā€“4:2021: Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites.

    Google ScholarĀ 

  2. Wortmann, F.-J., Schulz, K.: Stress relaxation and time/temperature superposition of polypropylene fibres. Polymer 36(2), 315ā€“321 (1995). https://doi.org/10.1016/0032-3861(95)91319-3

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Faghihi, M., Shojaei, A., Bagheri, R.: Characterization of polyamide 6/carbon nanotube composites prepared by melt mixing-effect of matrix molecular weight and structure. Compos. B Eng. 78, 50ā€“64 (2015). https://doi.org/10.1016/j.compositesb.2015.03.049

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Kasaliwal, G.R., Gƶldel, A., Pƶtschke, P., Heinrich, G.: Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer 52(4), 1027ā€“1036 (2011). https://doi.org/10.1016/j.polymer.2011.01.007

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Petrova, I., Kotsilkova, R., Ivanov, E., Kuzhir, P., Bychanok, D., Kouravelou, K., Karachalios, T., Soto Beobide, A., Voyiatzis, G., Codegoni, D.: Nanoscale reinforcement of polypropylene composites with carbon nanotubes and clay: Dispersion state, electromagnetic and nanomechanical properties. Polym. Eng. Sci. 56(3), 269ā€“277 (2016). https://doi.org/10.1002/pen.24247

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Pƶtschke, P., Mothes, F., Krause, B., Voit, B.: Melt-Mixed PP/MWCNT Composites: Influence of CNT Incorporation Strategy and Matrix Viscosity on Filler Dispersion and Electrical Resistivity. Polymers 11(2), 189 (2019). https://doi.org/10.3390/polym11020189

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. MičuÅ”Ć­k, M., OmastovĆ”, M., Krupa, I., ProkeÅ”, J., Pissis, P., Logakis, E., Pandis, C., Pƶtschke, P., Pionteck, J.: A comparative study on the electrical and mechanical behaviour of multi-walled carbon nanotube composites prepared by diluting a masterbatch with various types of polypropylenes. J. Appl. Polym. Sci. 113(4), 2536ā€“2551 (2009). https://doi.org/10.1002/app.30418

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Wang, P.-H., Sarkar, S., Gulgunje, P., Verghese, N., Kumar, S.: Structure and rheological behavior of polypropylene interphase at high carbon nanotube concentration. Polymer 150, 10ā€“25 (2018). https://doi.org/10.1016/j.polymer.2018.06.050

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Shieh, Y.T., Liu, G.L.: Effects of carbon nanotubes on crystallization and melting behavior of poly (L-lactide) via DSC and TMDSC studies. J. Polym. Sci., Part B: Polym. Phys. 45(14), 1870ā€“1881 (2007). https://doi.org/10.1002/polb.21184

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Wang, J., Kazemi, Y., Wang, S., Hamidinejad, M., Mahmud, M.B., Pƶtschke, P., Park, C.B.: Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. Compos. B Eng. 183, 107663 (2020). https://doi.org/10.1016/j.compositesb.2019.107663

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Xin, S., Wang, X.: Shear flow of molten polymer in melt blowing. Polym. Eng. Sci. 52(6), 1325ā€“1331 (2012). https://doi.org/10.1002/pen.23079

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Nayak, R., Padhye, R., Arnold, L., Kyratzis, I.L., Truong, Y.B., Peeters, G., Nichols, L., Oā€™Shea, M.: Mechanism of Nanofibre Fabrication by Meltblowing. Appl. Mech. Mater. 217ā€“219, 207ā€“212 (2012). https://doi.org/10.4028/www.scientific.net/AMM.217-219.207

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Henry, J.J., Goldbach, J., Stabler, S., Devisme, S., Chauveau, J.: Advancements in the production of meltblown fibres. Filtration + Separation 53(3), 36ā€“40 (2016). https://doi.org/10.1016/S0015-1882(16)30123-9

  14. Tsioptsias, C., Leontiadis, K., Tzimpilis, E., Tsivintzelis, I.: Polypropylene nanocomposite fibers: A review of current trends and new developments. J. Plast. Film Sheeting 37(3), 283ā€“311 (2021). https://doi.org/10.1177/8756087920972146

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Jose, M.V., Dean, D., Tyner, J., Price, G., Nyairo, E.: Polypropylene/carbon nanotube nanocomposite fibers: Processā€“morphologyā€“property relationships. J. Appl. Polym. Sci. 103(6), 3844ā€“3850 (2007). https://doi.org/10.1002/app.25475

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Ivanov, E., Kotsilkova, R.: Reinforcement Effects of Carbon Nanotubes in Polypropylene: Rheology, Structure, Thermal Stability, and Nano-, Micro-, and Macromechanical Properties. In: Makhlouf, A.S.H., Scharnweber, D. (eds.) Handbook of Nanoceramic and Nanocomposite Coatings and Materials, pp. 357ā€“388. Butterworth-Heinemann, United Kingdom (2015)

    ChapterĀ  Google ScholarĀ 

  17. Hegde, R.R., Bhat, G.S.: Nanoparticle effects on structure and properties of polypropylene meltblown webs. J. Appl. Polym. Sci. 115(2), 1062ā€“1072 (2010). https://doi.org/10.1002/app.31089

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Yetgin, S.H.: Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. J. Market. Res. 8(5), 4725ā€“4735 (2019). https://doi.org/10.1016/j.jmrt.2019.08.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Yu, K., Liu, Y., Leng, J.: Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv. 4(6), 2961ā€“2968 (2014). https://doi.org/10.1039/C3RA43258K

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Moore, E.M., Ortiz, D.L., Marla, V.T., Shambaugh, R.L., Grady, B.P.: Enhancing the strength of polypropylene fibers with carbon nanotubes. J. Appl. Polym. Sci. 93(6), 2926ā€“2933 (2004). https://doi.org/10.1002/app.20703

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Leelapornpisit, W., Ton-That, M.-T., Perrin-Sarazin, F., Cole, K.C., Denault, J., Simard, B.: Effect of carbon nanotubes on the crystallization and properties of polypropylene. J. Polym. Sci., Part B: Polym. Phys. 43(18), 2445ā€“2453 (2005). https://doi.org/10.1002/polb.20527

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Lozano, K., Barrera, E.: Nanofiberā€reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J. Appl. Polymer Sci. 79(1), 125ā€“133 (2001). https://doi.org/10.1002/1097-4628(20010103)79:1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Kara .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kara, Y. (2023). Development of Multiwalled Carbon Nanotube Doped Polypropylene Melt-Blown Fiber Mat Interleaved Hierarchical Single-Polypropylene Composites. In: Polypropylene Melt-Blown Fiber Mats and Their Composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-32577-9_5

Download citation

Publish with us

Policies and ethics