Abstract
This chapter aims to facilitate an outlook on melt-blown fiber mats and related composites by reviewing the recent developments in melt blowing, melt-blown fiber mats and their related applications, nano-/submicron fiber reinforced composites. The chapter also focuses on advancing sustainable fibers and composites via knowledge. The literature overview summarizes the materials used in the melt blowing, the effects of processing parameters on the structure and performance of the fiber mats and their products, thermal and physical properties, mechanical behaviors of fiber mat interleaved and reinforced composites, and related composite manufacturing methods and their potential implementation in polymer and composite science & engineering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Erben, J., Pilarova, K., Sanetrnik, F., Chvojka, J., Jencova, V., Blazkova, L., Havlicek, J., Novak, O., Mikes, P., Prosecka, E.: The combination of meltblown and electrospinning for bone tissue engineering. Mater. Lett. 143, 172–176 (2015). https://doi.org/10.1016/j.matlet.2014.12.100
Vadas, D., Kmetykó, D., Marosi, G., Bocz, K.: Application of Melt-Blown Poly (lactic acid) Fibres in Self-Reinforced Composites. Polymers 10(7), 766 (2018). https://doi.org/10.3390/polym10070766
Wang, H., Zhang, Y., Gao, H., Jin, X., Xie, X.: Composite melt-blown nonwoven fabrics with large pore size as Li-ion battery separator. Int. J. Hydrogen Energy 41(1), 324–330 (2016). https://doi.org/10.1016/j.ijhydene.2015.09.130
Souzandeh, H., Wang, Y., Netravali, A.N., Zhong, W.-H.: Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. Polym. Rev. 59(4), 651–686 (2019). https://doi.org/10.1080/15583724.2019.1599391
Watanabe, K., Kim, B.-S., Kim, I.-S.: Development of Polypropylene Nanofiber Production System. Polym. Rev. 51(3), 288–308 (2011). https://doi.org/10.1080/15583724.2011.594195
Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., Wang, M.: Presumed asymptomatic carrier transmission of COVID-19. JAMA 323(14), 1406–1407 (2020). https://doi.org/10.1001/jama.2020.2565
Koprivova, B., Lisnenko, M., Solarska-Sciuk, K., Prochazkova, R., Novotny, V., Mullerova, J., Mikes, P., Jencova, V.: Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. Express Polymer Lett. 14(10) (2020). https://doi.org/10.3144/expresspolymlett.2020.80
Kara, Y., He, H., Molnár, K.: Shear-aided high-throughput electrospinning: a needleless method with enhanced jet formation. J. Appl. Polym. Sci. 137(37), 49104 (2020). https://doi.org/10.1002/app.49104
Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N.: Structure of Melt-Blown Polymer Fibrous Materials (PFM). In: Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N. (eds.) Melt Blowing: Equipment, Technology, and Polymer Fibrous Materials, pp. 53–64. Springer, Berlin Heidelberg, Berlin, Heidelberg (2002)
Wente, V.A.: Superfine thermoplastic fibers. Ind. Eng. Chem. 48(8), 1342–1346 (1956). https://doi.org/10.1021/ie50560a034
Player, J.: Improvement in mineral wool. U.S. Patent USRE6895E, 1 Feb 1876
Hall, C.C.: Process of making mineral-wool felt. U.S. Patent US737099A, 25 August 1903
Thomas, J.H.: Apparatus for manufacturing glass wool. U.S. Patent US2192944A, 12 March 1940
Shambaugh, R.L.: A Macroscopic View of the Melt-Blowing Process for Producing Microfibers. Ind. Eng. Chem. Res. 27(12), 2363–2372 (1988). https://doi.org/10.1021/ie00084a021
Gahan R., Zguris G.C.: A review of the melt blown process. In: In Battery Conference on Applications and Advances, The Fifteenth Annual IEEE, New Orleans (USA) 2000, pp. 145–149
Bryner, M.: Extremely high liquid barrier fabrics. U.S. Patent US20040116028A1, 17 June 2004
Prentice, J.S.: Laminated non-woven sheet. U.S. Patent US4078124A, 7 March 1978
Grier-Idris, C.: Conformable surgical face mask. U.S. Patent US4662005A, 5 May 1987
Coates, D.A., Smith, R.J.M.: Disposable surgical face mask and method of producing it. United Kingdom Patent EP0051616B1, 13 May 1981
Bodaghi, H., Erickson, S.C., Purrington, S.M., Meyer, D.E., Krueger, D.L.: Oriented melt-blown fibers, processes for making such fibers and webs made from such fibers. U.S. Patent US5993943A, 30 November 1999
Van Paridon, H., Tynys, A., Fiebig, J., Parkinson, M.: Terpolymer for melt blown media for air filtration. U.S. Patent US9255349B2, 9 February 2016
Haubruge, H., Pavy, G., Standaert, A.: Fibres and nonwoven prepared from polypropylene having a large dispersity index. U.S. Patent US8283426B2, 9 October 2012
Demain, A.: Polypropylene fibres. U.S. Patent US6646051B1, 11 November 2003
Barboza, S.D., Hoffman Jr, C.S., Kopp, C.V., Schmitt, R.J., Shucosky, A.C.: Melt-blown filtration media having integrally co-located support and filtration fibers. U.S. Patent US5681469A, 28 October 1997
Wilson, A.: The formation of dry, wet, spunlaid and other types of nonwovens. In: Chapman, R.A. (ed.) Applications of Nonwovens in Technical Textiles, pp. 3–17. Woodhead Publishing, United Kingdom (2010)
Reicofil, R. https://www.reicofil.com/en/pages/meltblown_lines. Accessed 18 July 2020
Zhejiang CL Non Woven Machinery Co Ltd Meltblown non woven fabric making machine. https://www.hellononwoven.com/melt-blown-non-woven-fabric-making-machine/cl-m-melt-blown-non-woven-fabric-making-machine-line. Accessed December 2022
Sun, F., Li, T.-T., Ren, H., Jiang, Q., Peng, H.-K., Lin, Q., Lou, C.-W., Lin, J.-H.: PP/TiO2 Melt-Blown Membranes for Oil/Water Separation and Photocatalysis: Manufacturing Techniques and Property Evaluations. Polymers 11(5), 775 (2019). https://doi.org/10.3390/polym11050775
Ellison, C.J., Phatak, A., Giles, D.W., Macosko, C.W., Bates, F.S.: Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer 48(11), 3306–3316 (2007). https://doi.org/10.1016/j.polymer.2007.04.005
Yu, Y., Xiong, S., Huang, H., Zhao, L., Nie, K., Chen, S., Xu, J., Yin, X., Wang, H., Wang, L.: Fabrication and application of poly (phenylene sulfide) ultrafine fiber. React. Funct. Polym. 150, 104539 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104539
Zhao, R., Wadsworth, L.C.: Attenuating PP/PET bicomponent melt blown microfibers. Polym. Eng. Sci. 43(2), 463–469 (2003). https://doi.org/10.1002/pen.10037
Zhang, D., Sun, C., Beard, J., Brown, H., Carson, I., Hwo, C.: Development and characterization of poly(trimethylene terephthalate)-based bicomponent meltblown nonwovens. J. Appl. Polym. Sci. 83(6), 1280–1287 (2002). https://doi.org/10.1002/app.2295
Yesil, Y., Bhat, G.S.: Structure and mechanical properties of polyethylene melt blown nonwovens. International Journal of Clothing Science and Technology 28(6), 780–793 (2016). https://doi.org/10.1108/IJCST-09-2015-0099
Brochocka, A.: Efficiency of electret polycarbonate nonwovens in respiratory protection against nanoparticles. Autex Research Journal 17(2), 188–198 (2017). https://doi.org/10.1515/aut-2017-0004
Safranski, D.L., Boothby, J.M., Kelly, C.N., Beatty, K., Lakhera, N., Frick, C.P., Lin, A., Guldberg, R.E., Griffis, J.C.: Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens. J Mech Behav Biomed Mater 62, 545–555 (2016). https://doi.org/10.1016/j.jmbbm.2016.05.038
Wadsworth, L.C., Khan, A.Y.: Meltblowing of ethylene and fluorinated ethylene copolymers. U.S. Patent US5470663A, 28 November 1995
Ruamsuk, R., Takarada, W., Kikutani, T.: Fine filament formation behavior of polymethylpentene and polypropylene near spinneret in melt blowing process. Int. Polym. Proc. 31(2), 217–223 (2016). https://doi.org/10.3139/217.3163
Hammonds, R.L., Gazzola, W.H., Benson, R.S.: Physical and thermal characterization of polylactic acid meltblown nonwovens. Journal of Applied Polymer Science 131(15) (2014). https://doi.org/10.1002/app.40593
Yu, Y., Shim, E.: Process-structure-property relationship of meltblown poly (styrene–ethylene/butylene–styrene) nonwovens. J. Appl. Polym. Sci. 138(16), 50230 (2021). https://doi.org/10.1002/app.50230
Henry, J.J., Goldbach, J., Stabler, S., Devisme, S., Chauveau, J.: Advancements in the production of meltblown fibres. Filtration + Separation 53(3), 36–40 (2016). https://doi.org/10.1016/S0015-1882(16)30123-9
Zhang, D., Sun, C., Beard, J., Zhao, W., Carson, I., Hwo, C.: Innovative polytrimethylene terephthalate (PTT) polymers for technical nonwovens. J. Ind. Text. 31(3), 159–178 (2002). https://doi.org/10.1106/152808302025393
Müller, D.H., Krobjilowski, A.: Meltblown fabrics from biodegradable polymers. Int. Nonwovens J. 10(1), 11–17 (2001). https://doi.org/10.1177/1558925001os-1000106
Bhat, G., Malkan, S.: Polymer-laid web formation. In: Russell, S.J. (ed.) Handbook of nonwovens, vol. 760. pp. 180–182. Cambridge (UK) (2007)
Chen, T., Wang, X., Huang, X.: Effects of Processing Parameters on the Fiber Diameter of Melt Blown Nonwoven Fabrics. Text. Res. J. 75(1), 76–80 (2016). https://doi.org/10.1177/004051750507500114
Yarin A. L., Pourdeyhimi B., Ramakrishna S.: Melt- and solution blowing. In: Yarin A. L., Pourdeyhimi B., Ramakrishna S. (eds.) Fundamentals and applications of micro and nanofibers. pp. 90–92 Cambridge University Press UK (2013)
Jones A. M.: A Study of Resin Melt Flow Rate And Polydispersity Effects On The Mechanical Properties of Melt Blown Polypropylene Webs. In: Fourth International Conference on Polypropylene Fibers and Textiles, Nottingham (UK), September 23–25 1987
Tan, D.H., Zhou, C., Ellison, C.J., Kumar, S., Macosko, C.W., Bates, F.S.: Meltblown fibers: Influence of viscosity and elasticity on diameter distribution. J. Nonnewton. Fluid Mech. 165(15–16), 892–900 (2010). https://doi.org/10.1016/j.jnnfm.2010.04.012
Zhang, D., Sun, C., Beard, J., Brown, H., Carson, I., Hwo, C.: Development and characterization of poly (trimethylene terephthalate)-based bicomponent meltblown nonwovens. J. Appl. Polym. Sci. 83(6), 1280–1287 (2002). https://doi.org/10.1002/app.2295
Xu, Q.Y., Wang, Y.M.: The Effects of Processing Parameter on Melt-Blown Filtration Materials. Advanced Materials Research 650, 78–84 (2013). https://doi.org/10.4028/www.scientific.net/AMR.650.78
Guo, M., Liang, H., Luo, Z., Chen, Q., Wei, W.: Study on melt-blown processing, web structure of polypropylene nonwovens and its BTX adsorption. Fibers and Polymers 17(2), 257–265 (2016). https://doi.org/10.1007/s12221-016-5592-y
Marla, V.T., Shambaugh, R.L.: Modeling of the Melt Blowing Performance of Slot Dies. Ind. Eng. Chem. Res. 43(11), 2789–2797 (2004). https://doi.org/10.1021/ie030767a
Bansal, V., Shambaugh, R.L.: On-line Determination of Diameter and Temperature during Melt Blowing of Polypropylene. Ind. Eng. Chem. Res. 37(5), 1799 (1998). https://doi.org/10.1021/ie9709042
Drabek, J., Zatloukal, M., Martyn, M.: Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes. J. Nonnewton. Fluid Mech. 251, 107–118 (2018). https://doi.org/10.1016/j.jnnfm.2017.11.009
Lee, Y., Wadsworth, L.C.: Effects of melt-blowing process conditions on morphological and mechanical properties of polypropylene webs. Polymer 33(6), 1200–1209 (1992). https://doi.org/10.1016/0032-3861(92)90764-N
Xie, S., Han, W., Jiang, G., Chen, C.: Turbulent air flow field in slot-die melt blowing for manufacturing microfibrous nonwoven materials. J. Mater. Sci. 53(9), 6991–7003 (2018). https://doi.org/10.1007/s10853-018-2008-y
Xie, S., Zheng, Y., Zeng, Y.: Influence of Die Geometry on Fiber Motion and Fiber Attenuation in the Melt-Blowing Process. Ind. Eng. Chem. Res. 53(32), 12866–12871 (2014). https://doi.org/10.1021/ie5025529
Moore, E.M., Papavassiliou, D.V., Shambaugh, R.L.: Air Velocity, Air Temperature, Fiber Vibration and Fiber Diameter Measurements on a Practical Melt Blowing Die. International Nonwovens Journal International Nonwovens Journal 13(3), 1558925004os-1558925013 (2004). https://doi.org/10.1177/1558925004os-1300309
Drabek, J., Zatloukal, M.: Meltblown technology for production of polymeric microfibers/nanofibers: A review. Phys. Fluids 31(9), 091301 (2019). https://doi.org/10.1063/1.5116336
Bresee, R.R., Qureshi, U.A.: Fiber Motion near the Collector during Melt Blowing: Part 2 — Fly Formation. Int. Nonwovens J. 11(3), 21–27 (2002). https://doi.org/10.1177/1558925002os-01100306
Milligan, M.W., Haynes, B.D.: Empirical models for melt blowing. J. Appl. Polym. Sci. 58(1), 159–163 (1995). https://doi.org/10.1002/app.1995.070580117
Uppal, R., Bhat, G., Eash, C., Akato, K.: Meltblown nanofiber media for enhanced quality factor. Fibers and Polymers 14(4), 660–668 (2013). https://doi.org/10.1007/s12221-013-0660-z
Milligan, M.W., Lu, F., Buntin, R.R., Wadsworth, L.C.: The use of crossflow to improve nonwoven melt-blown fibers. APP Journal of Applied Polymer Science 44(2), 279–288 (1992). https://doi.org/10.1002/app.1992.070440212
Hao, X., Zeng, Y.: A review on the studies of air flow field and fiber formation process during melt blowing. Ind. Eng. Chem. Res. 58(27), 11624–11637 (2019). https://doi.org/10.1021/acs.iecr.9b01694
Choi, K.J., Spruiell, J.E., Fellers, J.F., Wadsworth, L.C.: Strength properties of melt blown nonwoven webs. Polym. Eng. Sci. 28(2), 81–89 (1988). https://doi.org/10.1002/pen.760280204
Bresee, R.R., Qureshi, A., Pelham, M.C.: Influence of processing conditions on melt blown web structure: part 2-primary airflow rate. Int. Nonwovens J. 14(2), 11–18 (2005). https://doi.org/10.1177/1558925005os-1400202
Hassan, M.A., Yeom, B.Y., Wilkie, A., Pourdeyhimi, B., Khan, S.A.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344 (2013). https://doi.org/10.1016/j.memsci.2012.09.050
Tyagi, M.K., Shambaugh, R.L.: Use of Oscillating Gas Jets in Fiber Processing. Ind. Eng. Chem. Res. 34(2), 656–660 (1995). https://doi.org/10.1021/ie00041a027
Tan, D.H., Herman, P.K., Janakiraman, A., Bates, F.S., Kumar, S., Macosko, C.W.: Influence of Laval nozzles on the air flow field in melt blowing apparatus. Chem. Eng. Sci. 80, 342–348 (2012). https://doi.org/10.1016/j.ces.2012.06.020
Xie, S., Zeng, Y.: Fiber spiral motion in a swirl die melt-blowing process. Fibers and Polymers 15(3), 553–559 (2014). https://doi.org/10.1007/s12221-014-0553-9
Rawlins, J., Kang, J.: Fine liquid blowing: A high Reynolds number, high production rate nanofiber manufacturing technique. J. Appl. Polym. Sci. 136(17), 47384 (2019). https://doi.org/10.1002/app.47384
Jirsák, O., Wadsworth, L.C.: Nonwoven Textiles. Carolina Academic Press, USA (1999)
Shambaugh, B.R., Papavassiliou, D.V., Shambaugh, R.L.: Modifying air fields to improve melt blowing. Ind. Eng. Chem. Res. 51(8), 3472–3482 (2012). https://doi.org/10.1021/ie202501u
Bo, Z.: Production of polypropylene melt blown nonwoven fabrics: Part I-numerical simulation and prediction of fibre diameter. Indian J. Fibre Text. Res. 37(3), 280–286 (2012)
Yin, H., Yan, Z., Ko, W.-C., Bresee, R.R.: Fundamental Description of the Melt Blowing Process. International Nonwovens Journal International Nonwovens Journal 9(4), 25–28 (2000). https://doi.org/10.1177/1558925000OS-900408
Begenir, A., Michielsen, S., Pourdeyhimi, B.: Melt-blowing thermoplastic polyurethane and polyether-block-amide elastomers: Effect of processing conditions and crystallization on web properties. Polym. Eng. Sci. 49(7), 1340–1349 (2009). https://doi.org/10.1002/pen.21244
Feng, J.: Preparation and properties of poly (lactic acid) fiber melt blown non-woven disordered mats. Mater. Lett. 189, 180–183 (2017). https://doi.org/10.1016/j.matlet.2016.12.013
Bresee, R.R.: Fiber Motion Near The Collector During Melt Blowing Part 1: General Considerations. Int. Nonwovens J. 11(2), 27–34 (2002). https://doi.org/10.1177/1558925002OS-01100207
Chen, T., Li, L., Huang, X.: Fiber diameter of polybutylene terephthalate melt-blown nonwovens. J. Appl. Polym. Sci. 97(4), 1750–1752 (2005). https://doi.org/10.1002/app.21932
Bresee, R.R., Qureshi, U.A.: Influence of process Conditions on Melt Blown Web Structure. Part IV - Fiber Diameter. Journal of Engineered Fibers and Fabrics 1(1), 155892500600100 (2006). https://doi.org/10.1177/155892500600100103
Peng, M., Jia, H., Jiang, L., Zhou, Y., Ma, J.: Study on structure and property of PP/TPU melt-blown nonwovens. The Journal of The Textile Institute 110(3), 468–475 (2018). https://doi.org/10.1080/00405000.2018.1485461
Lee, Y.E., Wadsworth, L.C.: Fiber and web formation of melt-blown thermoplastic polyurethane polymers. J. Appl. Polym. Sci. 105(6), 3724–3727 (2007). https://doi.org/10.1002/app.26432
Kulas, D.G., Zolghadr, A., Chaudhari, U.S., Shonnard, D.R.: Economic and environmental analysis of plastics pyrolysis after secondary sortation of mixed plastic waste. J. Clean. Prod. 384, 135542 (2023). https://doi.org/10.1016/j.jclepro.2022.135542
Ronkay, F., Molnar, B., Gere, D., Czigany, T.: Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Manage. 119, 101–110 (2021). https://doi.org/10.1016/j.wasman.2020.09.029
Lebreton, L., Andrady, A.: Future scenarios of global plastic waste generation and disposal. Palgrave Communications 5(1), 6 (2019). https://doi.org/10.1057/s41599-018-0212-7
T. Phelps, B., Sam, C.: Masks on the Beach: The impact of COVID-19 on marine plastic pollution. In., pp. 12–14. (2020)
Uddin, M.S., Abedin, M.Z., Ali, M.Y.: Fabrication and characterization of plastic tiles from plastic wastes in Bangladesh. AIP Conf. Proc. 2643(1), 050048 (2023). https://doi.org/10.1063/5.0110368
Tarrahi, R., Fathi, Z., Seydibeyoğlu, M.Ö., Doustkhah, E., Khataee, A.: Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int. J. Biol. Macromol. 146, 596–619 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.181
Mayilswamy, N., Kandasubramanian, B.: Green composites prepared from soy protein, polylactic acid (PLA), starch, cellulose, chitin: a review. Emergent Materials (2022). https://doi.org/10.1007/s42247-022-00354-2
Pellis, A., Malinconico, M., Guarneri, A., Gardossi, L.: Renewable polymers and plastics: Performance beyond the green. New Biotechnol. 60, 146–158 (2021). https://doi.org/10.1016/j.nbt.2020.10.003
Lowe, C.E.: Preparation of high molecular weight polyhydroxyacetic ester. U.S. Patent US2668162A, 2 February 1954
Skoczinski, P., Carus, M., De Guzman, D., Ravenstijn, J., Käb, H., Baltus, W., Chinthapalli, R., Raschka, A.: Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. In. Nova-Institute, Hürth, German, (2021)
Martínez Silva, P., Nanny, M.A.: Impact of Microplastic Fibers from the Degradation of Nonwoven Synthetic Textiles to the Magdalena River Water Column and River Sediments by the City of Neiva, Huila (Colombia). Water 12(4), 1210 (2020). https://doi.org/10.3390/w12041210
Arrieta, M.P., Perdiguero, M., Fiori, S., Kenny, J.M., Peponi, L.: Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polym. Degrad. Stab. 179, 109226 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109226
Wang, L., Gao, Y., Xiong, J., Shao, W., Cui, C., Sun, N., Zhang, Y., Chang, S., Han, P., Liu, F.: Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly (lactic acid) electrospinning. J. Colloid Interface Sci. 606, 961–970 (2022). https://doi.org/10.1016/j.jcis.2021.08.079
Choi, S., Jeon, H., Jang, M., Kim, H., Shin, G., Koo, J.M., Lee, M., Sung, H.K., Eom, Y., Yang, H.S.: Biodegradable, efficient, and breathable multi-use face mask filter. Advanced Science 8(6), 2003155 (2021). https://doi.org/10.1002/advs.202003155
Gao, H., Liu, G., Guan, J., Wang, X., Yu, J., Ding, B.: Biodegradable Hydro-charging Polylactic Acid Melt-blown Nonwovens with Efficient PM0.3 Removal. Chemical Engineering Journal, 141412 (2023). https://doi.org/10.1016/j.cej.2023.141412
Dharmalingam, S., Hayes, D.G., Wadsworth, L.C., Dunlap, R.N., DeBruyn, J.M., Lee, J., Wszelaki, A.L.: Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J. Polym. Environ. 23(3), 302–315 (2015). https://doi.org/10.1007/s10924-015-0716-9
Kara, Y., Molnár, K.: Decomposition Behavior of Stereocomplex PLA Melt-Blown Fine Fiber Mats in Water and in Compost. J. Polym. Environ. (2022). https://doi.org/10.1007/s10924-022-02694-w
Liu, J., Pui, D.Y., Wang, J.: Removal of airborne nanoparticles by membrane coated filters. Sci. Total Environ. 409(22), 4868–4874 (2011). https://doi.org/10.1016/j.scitotenv.2011.08.011
Hutten, I.M.: Properties of Nonwoven Filter Media. In: Hutten, I.M. (ed.) Handbook of Nonwoven Filter Media, pp. 71–102. Butterworth-Heinemann, Oxford (2007)
R, M., J, S.: NIOSH Fact Sheet. https://www.cdc.gov/niosh/docs/2011-179/pdfs/2011-179.pdf (2011). Accessed 11 June 2020
Racz, L., Yamamoto, D.P., Eninger, R.M.: Handbook of respiratory protection: Safeguarding against current and emerging hazards. CRC Press, (2017)
Standardization, E.C.f.: Respiratory protective devices - Filtering half masks to protect against particles - Requirements, testing, marking. In. EN 149:2001+A1:2009. Brussels, (2009)
Standardization, E.C.f.: Respiratory protective devices. Methods of test. Determination of particle filter penetration. In. EN 13274–7:2008. European Committee for Standardization Brussels, (2008)
Tsai, P., Yan, Y.: The influence of fiber and fabric properties on nonwoven performance. In: Applications of nonwovens in technical textiles. pp. 18–45. Elsevier, (2010)
Yesil, Y., Bhat, G.S.: Porosity and barrier properties of polyethylene meltblown nonwovens. The Journal of The Textile Institute 108(6), 1035–1040 (2016). https://doi.org/10.1080/00405000.2016.1218109
He, H., Gao, M., Illés, B., Molnar, K.: 3D Printed and Electrospun, Transparent, Hierarchical Polylactic Acid Mask Nanoporous Filter. International Journal of Bioprinting 6(4) (2020). https://doi.org/10.18063/ijb.v6i4.278
Motyl, E., Lowkis, B.: Effect of air humidity on charge decay and lifetime of PP electret nonwovens. Fibres and Textiles in Eastern Europe 14(5), 59 (2006)
Mao, N.: Nonwoven fabric filters. In: Kellie, G. (ed.) Advances in Technical Nonwovens, pp. 273–310. Woodhead Publishing, United Kingdom (2016)
Cheng, S., Muhaiminul, A.S., Yue, Z., Wang, Y., Xiao, Y., Militky, J., Prasad, M., Zhu, G.: Effect of Temperature on the Structure and Filtration Performance of Polypropylene Melt-Blown Nonwovens. Autex Research Journal 1(ahead-of-print) (2020). https://doi.org/10.2478/aut-2019-0067
Thomas, D., Contal, P., Renaudin, V., Penicot, P., Leclerc, D., Vendel, J.: Modelling pressure drop in HEPA filters during dynamic filtration. J. Aerosol Sci. 30(2), 235–246 (1999). https://doi.org/10.1016/S0021-8502(98)00036-6
Xiao, Y., Sakib, N., Yue, Z., Wang, Y., You, J., Militky, J., Prasad, M., Zhu, G.: Study on the Relationship Between Structure Parameters and Filtration Performance of Polypropylene Meltblown Nonwovens. Autex Research Journal 1(ahead-of-print) (2019). https://doi.org/10.2478/aut-2019-0029
Wang, Q., Maze, B., Tafreshi, H.V., Pourdeyhimi, B.: A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media. Chem. Eng. Sci. 61(15), 4871–4883 (2006). https://doi.org/10.1016/j.ces.2006.03.039
Jaganathan, S., Vahedi Tafreshi, H., Pourdeyhimi, B.: On the pressure drop prediction of filter media composed of fibers with bimodal diameter distributions. Powder Technol. 181(1), 89–95 (2008). https://doi.org/10.1016/j.powtec.2007.07.002
Yang, C., Jiang, X., Gao, X., Wang, H., Li, L., Hussain, N., Xie, J., Cheng, Z., Li, Z., Yan, J., Zhong, M., Zhao, L., Wu, H.: Saving 80% Polypropylene in Facemasks by Laser-Assisted Melt-Blown Nanofibers. Nano Lett. 22(17), 7212–7219 (2022). https://doi.org/10.1021/acs.nanolett.2c02693
Ghosh, S.: Composite nonwovens in medical applications. In: Das, D., Pourdeyhimi, B. (eds.) Composite Non-Woven Materials, pp. 211–224. Woodhead Publishing, UK (2014)
Mukhopadhyay, A.: Composite nonwovens in filters: applications. In: Das, D., Pourdeyhimi, B. (eds.) Composite Non-Woven Materials, pp. 164–210. Woodhead Publishing, UK (2014)
Das, D., Pradhan, A.K., Chattopadhyay, R., Singh, S.N.: Composite Nonwovens. Text. Prog. 44(1), 1–84 (2012). https://doi.org/10.1080/00405167.2012.670014
Zhu, X., Dai, Z., Xu, K., Zhao, Y., Ke, Q.: Fabrication of Multifunctional Filters via Online Incorporating Nano-TiO2 into Spun-Bonded/Melt-Blown Nonwovens for Air Filtration and Toluene Degradation. Macromol. Mater. Eng. 304(12), 1900350 (2019). https://doi.org/10.1002/mame.201900350
Kothari, V.K., Newton, A.: The air-permeability of non-woven fabrics. J. Text. Inst. 65(10), 525–531 (1974). https://doi.org/10.1080/00405007408630140
Góra, A., Sahay, R., Thavasi, V., Ramakrishna, S.: Melt-Electrospun Fibers for Advances in Biomedical Engineering, Clean Energy, Filtration, and Separation. Polym. Rev. 51(3), 265–287 (2011). https://doi.org/10.1080/15583724.2011.594196
Albrecht, W., Fuchs, H., Kittelmann, W.: Nonwoven Fabrics : Raw Materials, Manufacture, Applications, Characteristics, Testing Processes. (2002).
Kara, Y., Akbulut, H.: Mechanical behavior of helical springs made of carbon nanotube additive epoxy composite reinforced with carbon fiber. Journal of the Faculty of Engineering and Architecture of Gazi University 32(2), 417–427 (2017). https://doi.org/10.17341/gazimmfd.322166
Xin, Y., Nesser, H., Zhou, J., Lubineau, G.: Evolution of the Seebeck effect in nanoparticle-percolated networks under applied strain. Appl. Mater. Today 28, 101503 (2022). https://doi.org/10.1016/j.apmt.2022.101503
Abuaf, M., Mastai, Y.: Electrospinning of polymer nanofibers based on chiral polymeric nanoparticles. Polym. Adv. Technol. (2022). https://doi.org/10.1002/pat.5666
Karbowniczek, J.E., Ura, D.P., Stachewicz, U.: Nanoparticles distribution and agglomeration analysis in electrospun fiber based composites for desired mechanical performance of poly(3-hydroxybuty-rate-co-3-hydroxyvalerate (PHBV) scaffolds with hydroxyapatite (HA) and titanium dioxide (TiO2) towards medical applications. Compos. B Eng. 241, 110011 (2022). https://doi.org/10.1016/j.compositesb.2022.110011
Biswas, M.C., Chowdhury, A., Hossain, M.M., Hossain, M.K.: 11 - Applications, drawbacks, and future scope of nanoparticle-based polymer composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Yashas Gowda, T.G., Siengchin, S., Seydibeyoglu, M.O. (eds.) Nanoparticle-Based Polymer Composites. pp. 243–275. Woodhead Publishing, (2022)
Rivero, P.J., Urrutia, A., Goicoechea, J., Arregui, F.J.: Nanomaterials for Functional Textiles and Fibers. Nanoscale Res. Lett. 10(1), 501 (2015). https://doi.org/10.1186/s11671-015-1195-6
Han, M.-C., He, H.-W., Kong, W.-K., Dong, K., Wang, B.-Y., Yan, X., Wang, L.-M., Ning, X.: High-performance Electret and Antibacterial Polypropylene Meltblown Nonwoven Materials Doped with Boehmite and ZnO Nanoparticles for Air Filtration. Fibers and Polymers 23(7), 1947–1955 (2022). https://doi.org/10.1007/s12221-022-4786-8
Cabello-Alvarado, C., Andrade-Guel, M., Medellin-Banda, D.I., Ávila-Orta, C.A., Cadenas-Pliego, G., Sáenz-Galindo, A., Radillo-Radillo, R., Lara-Sánchez, J.F., Melo-Lopez, L.: Non-woven fabrics based on Nylon 6/carbon black-graphene nanoplatelets obtained by melt-blowing for adsorption of urea, uric acid and creatinine. Mater. Lett. 320, 132382 (2022). https://doi.org/10.1016/j.matlet.2022.132382
Nasir, A., Kausar, A., Younus, A.: A Review on Preparation, Properties and Applications of Polymeric Nanoparticle-Based Materials. Polym.-Plast. Technol. Eng. 54(4), 325–341 (2015). https://doi.org/10.1080/03602559.2014.958780
Hegde, R.R., Bhat, G.S.: Nanoparticle effects on structure and properties of polypropylene meltblown webs. J. Appl. Polym. Sci. 115(2), 1062–1072 (2010). https://doi.org/10.1002/app.31089
Cao, L., Su, D., Su, Z., Chen, X.: Fabrication of multiwalled carbon nanotube/polypropylene conductive fibrous membranes by melt electrospinning. Ind. Eng. Chem. Res. 53(6), 2308–2317 (2014). https://doi.org/10.1021/ie403746p
Krucińska, I., Surma, B., Chrzanowski, M., Skrzetuska, E., Puchalski, M.: Application of melt-blown technology in the manufacturing of a solvent vapor-sensitive, non-woven fabric composed of poly(lactic acid) loaded with multi-walled carbon nanotubes. Text. Res. J. 83(8), 859–870 (2013). https://doi.org/10.1177/0040517512460293
Dydek, K., Latko-Durałek, P., Boczkowska, A., Sałaciński, M., Kozera, R.: Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes. Compos. Sci. Technol. 173, 110–117 (2019). https://doi.org/10.1016/j.compscitech.2019.02.007
Wang, G., Yu, D., Kelkar, A.D., Zhang, L.: Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci. 75, 73–107 (2017). https://doi.org/10.1016/j.progpolymsci.2017.08.002
Kara, Y., Kovács, N.K., Nagy-György, P., Boros, R., Molnár, K.: A novel method and printhead for 3D printing combined nano-/microfiber solid structures. Addit. Manuf. 61, 103315 (2023). https://doi.org/10.1016/j.addma.2022.103315
Kenry, Lim, C.T.: Nanofiber technology: current status and emerging developments. Progress in Polymer Science 70, 1–17 (2017). https://doi.org/10.1016/j.progpolymsci.2017.03.002
Islam, M.Z., Sarker, M.E., Rahman, M.M., Islam, M.R., Ahmed, A.T.M.F., Mahmud, M.S., Syduzzaman, M.: Green composites from natural fibers and biopolymers: A review on processing, properties, and applications. J. Reinf. Plast. Compos. 41(13–14), 526–557 (2022). https://doi.org/10.1177/07316844211058708
Jerpdal, L., Åkermo, M.: Influence of fibre shrinkage and stretching on the mechanical properties of self-reinforced poly(ethylene terephthalate) composite. J. Reinf. Plast. Compos. 33(17), 1644–1655 (2014). https://doi.org/10.1177/0731684414541018
Hine, P., Astruc, A., Ward, I.: Hot compaction of polyethylene naphthalate. J. Appl. Polym. Sci. 93(2), 796–802 (2004). https://doi.org/10.1002/app.20517
Kmetty, Á., Bárány, T., Karger-Kocsis, J.: Self-reinforced polymeric materials: A review. Prog. Polym. Sci. 35(10), 1288–1310 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.002
Wu, N., Zheng, S., Yang, J., Gao, Y., Wang, J., Chen, L.: Three-dimensional orthogonal nonwoven single polymer composite. J. Reinf. Plast. Compos. 36(12), 889–899 (2017). https://doi.org/10.1177/0731684417694752
Wang, J., Zhang, Q., Cheng, Y., Song, F., Ding, Y., Shao, M.: Self-reinforced composites based on polypropylene fiber and graphene nano-platelets/polypropylene film. Carbon 189, 586–595 (2022). https://doi.org/10.1016/j.carbon.2021.12.098
Hine, P., Olley, R., Ward, I.: The use of interleaved films for optimising the production and properties of hot compacted, self reinforced polymer composites. Compos. Sci. Technol. 68(6), 1413–1421 (2008). https://doi.org/10.1016/j.compscitech.2007.11.003
Capiati, N.J., Porter, R.S.: The concept of one polymer composites modelled with high density polyethylene. J. Mater. Sci. 10(10), 1671–1677 (1975)
Romhany, G., Barany, T., Czigany, T., Karger-Kocsis, J.: Fracture and failure behavior of fabric-reinforced all-poly (propylene) composite (Curv®). Polym. Adv. Technol. 18(2), 90–96 (2007)
Chen, J., Wu, C., Pu, F., Chiu, C.: Fabrication and mechanical properties of self-reinforced poly (ethylene terephthalate) composites. Express Polymer Letters 5(3) (2011).
Mészáros, L., Kara, Y., Fekete, T., Molnár, K.: Development of self-reinforced low-density polyethylene using γ-irradiation cross-linked polyethylene fibres. Radiat. Phys. Chem. 170, 108655 (2020). https://doi.org/10.1016/j.radphyschem.2019.108655
Matabola, K., Vries, A., Moolman, F., Luyt, A.: Single polymer composites: A review. J. Mater. Sci. 44, 6213–6222 (2009). https://doi.org/10.1007/s10853-009-3792-1
Lan, B., Liu, Y., Mo, S., He, M., Zhai, L., Fan, L.: Interlaminar Fracture Behavior of Carbon Fiber/Polyimide Composites Toughened by Interleaving Thermoplastic Polyimide Fiber Veils. Materials 14(10), 2695 (2021). https://doi.org/10.3390/ma14102695
Somord, K., Suwantong, O., Tawichai, N., Peijs, T., Soykeabkaew, N.: Self-reinforced poly (lactic acid) nanocomposites of high toughness. Polymer 103, 347–352 (2016)
Matabola, K., de Vries, A., Luyt, A., Kumar, R.: Studies on single polymer composites of poly (methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. eXPRESS Polymer Letters 5(7), 635–642 (2011).
Li, B., Pan, S., Yuan, H., Zhang, Y.: Optical and mechanical anisotropies of aligned electrospun nanofibers reinforced transparent PMMA nanocomposites. Compos. A Appl. Sci. Manuf. 90, 380–389 (2016)
Zhao, Y., Ma, X., Xu, T., Salem, D.R., Fong, H.: Hybrid multi-scale thermoplastic composites reinforced with interleaved nanofiber mats using in-situ polymerization of cyclic butylene terephthalate. Compos. Commun. 12, 91–97 (2019). https://doi.org/10.1016/j.coco.2019.01.005
Stachewicz, U., Modaresifar, F., Bailey, R.J., Peijs, T., Barber, A.H.: Manufacture of void-free electrospun polymer nanofiber composites with optimized mechanical properties. ACS Appl. Mater. Interfaces. 4(5), 2577–2582 (2012)
Bárány, T., Karger-Kocsis, J., Czigány, T.: Development and characterization of self-reinforced poly (propylene) composites: carded mat reinforcement. Polym. Adv. Technol. 17(9–10), 818–824 (2006). https://doi.org/10.1002/pat.813
Kiss, Z., Temesi, T., Bitay, E., Bárány, T., Czigány, T.: Ultrasonic welding of all-polypropylene composites. J. Appl. Polym. Sci. 137(24), 48799 (2020). https://doi.org/10.1002/app.48799
Fakirov, S.: Nano-and microfibrillar single-polymer composites: a review. Macromol. Mater. Eng. 298(1), 9–32 (2013). https://doi.org/10.1002/mame.201200226
Cheon, J., Kim, M.: Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber. Compos. B Eng. 217, 108872 (2021). https://doi.org/10.1016/j.compositesb.2021.108872
Beylergil, B., Tanoğlu, M., Aktaş, E.: Enhancement of interlaminar fracture toughness of carbon fiber–epoxy composites using polyamide-6, 6 electrospun nanofibers. J. Appl. Polym. Sci. 134(35), 45244 (2017). https://doi.org/10.1002/app.45244
Kwon, D.-J., Kwon, I.-J., Milam-Guerrero, J., Yang, S.B., Yeum, J.H., Choi, H.H.: Aramid nanofiber-reinforced multilayer electromagnetic-interference (EMI) shielding composites with high interfacial durability. Mater. Des. 215, 110452 (2022). https://doi.org/10.1016/j.matdes.2022.110452
Li, T., Wang, Z., Zhang, H., Hu, Z., Yu, J., Wang, Y.: Effect of aramid nanofibers on interfacial properties of high performance fiber reinforced composites. Compos. Interfaces 29(3), 312–326 (2022). https://doi.org/10.1080/09276440.2021.1942668
Wang, C., Wu, Y.-J., Fang, C.-Y., Tsai, C.-W.: Electrospun nanofiber-reinforced polypropylene composites: nucleating ability of nanofibers. Compos. Sci. Technol. 126, 1–8 (2016). https://doi.org/10.1016/j.compscitech.2016.02.006
He, H., Kara, Y., Molnar, K.: Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolut. Discovery 4(1), 7–11 (2019). https://doi.org/10.1556/2051.2018.00063
Patel, P.R., Gundloori, R.V.N.: A review on electrospun nanofibers for multiple biomedical applications. Polym. Adv. Technol. 34(1), 44–63 (2023). https://doi.org/10.1002/pat.5896
Mijares, J.L., Agaliotis, E., Bernal, C.R., Mollo, M.: Self-reinforced polypropylene composites based on low-cost commercial woven and non-woven fabrics. Polym. Adv. Technol. 29(1), 111–120 (2018). https://doi.org/10.1002/pat.4093
Virág, Á.D., Kara, Y., Vas, L.M., Molnár, K.: Single polymer composites made of melt-blown PP mats and the modelling of the uniaxial tensile behaviour by the fibre bundle cells method. Fibers Polymers (2021). https://doi.org/10.1007/s12221-022-5138-4
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kara, Y. (2023). Literature Overview. In: Polypropylene Melt-Blown Fiber Mats and Their Composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-32577-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-32577-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32576-2
Online ISBN: 978-3-031-32577-9
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)