Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 146 Accesses

Abstract

This chapter aims to facilitate an outlook on melt-blown fiber mats and related composites by reviewing the recent developments in melt blowing, melt-blown fiber mats and their related applications, nano-/submicron fiber reinforced composites. The chapter also focuses on advancing sustainable fibers and composites via knowledge. The literature overview summarizes the materials used in the melt blowing, the effects of processing parameters on the structure and performance of the fiber mats and their products, thermal and physical properties, mechanical behaviors of fiber mat interleaved and reinforced composites, and related composite manufacturing methods and their potential implementation in polymer and composite science & engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erben, J., Pilarova, K., Sanetrnik, F., Chvojka, J., Jencova, V., Blazkova, L., Havlicek, J., Novak, O., Mikes, P., Prosecka, E.: The combination of meltblown and electrospinning for bone tissue engineering. Mater. Lett. 143, 172–176 (2015). https://doi.org/10.1016/j.matlet.2014.12.100

    Article  CAS  Google Scholar 

  2. Vadas, D., Kmetykó, D., Marosi, G., Bocz, K.: Application of Melt-Blown Poly (lactic acid) Fibres in Self-Reinforced Composites. Polymers 10(7), 766 (2018). https://doi.org/10.3390/polym10070766

    Article  CAS  Google Scholar 

  3. Wang, H., Zhang, Y., Gao, H., Jin, X., Xie, X.: Composite melt-blown nonwoven fabrics with large pore size as Li-ion battery separator. Int. J. Hydrogen Energy 41(1), 324–330 (2016). https://doi.org/10.1016/j.ijhydene.2015.09.130

    Article  CAS  Google Scholar 

  4. Souzandeh, H., Wang, Y., Netravali, A.N., Zhong, W.-H.: Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. Polym. Rev. 59(4), 651–686 (2019). https://doi.org/10.1080/15583724.2019.1599391

    Article  CAS  Google Scholar 

  5. Watanabe, K., Kim, B.-S., Kim, I.-S.: Development of Polypropylene Nanofiber Production System. Polym. Rev. 51(3), 288–308 (2011). https://doi.org/10.1080/15583724.2011.594195

    Article  CAS  Google Scholar 

  6. Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., Wang, M.: Presumed asymptomatic carrier transmission of COVID-19. JAMA 323(14), 1406–1407 (2020). https://doi.org/10.1001/jama.2020.2565

    Article  CAS  Google Scholar 

  7. Koprivova, B., Lisnenko, M., Solarska-Sciuk, K., Prochazkova, R., Novotny, V., Mullerova, J., Mikes, P., Jencova, V.: Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. Express Polymer Lett. 14(10) (2020). https://doi.org/10.3144/expresspolymlett.2020.80

  8. Kara, Y., He, H., Molnár, K.: Shear-aided high-throughput electrospinning: a needleless method with enhanced jet formation. J. Appl. Polym. Sci. 137(37), 49104 (2020). https://doi.org/10.1002/app.49104

    Article  CAS  Google Scholar 

  9. Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N.: Structure of Melt-Blown Polymer Fibrous Materials (PFM). In: Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N. (eds.) Melt Blowing: Equipment, Technology, and Polymer Fibrous Materials, pp. 53–64. Springer, Berlin Heidelberg, Berlin, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Wente, V.A.: Superfine thermoplastic fibers. Ind. Eng. Chem. 48(8), 1342–1346 (1956). https://doi.org/10.1021/ie50560a034

    Article  CAS  Google Scholar 

  11. Player, J.: Improvement in mineral wool. U.S. Patent USRE6895E, 1 Feb 1876

    Google Scholar 

  12. Hall, C.C.: Process of making mineral-wool felt. U.S. Patent US737099A, 25 August 1903

    Google Scholar 

  13. Thomas, J.H.: Apparatus for manufacturing glass wool. U.S. Patent US2192944A, 12 March 1940

    Google Scholar 

  14. Shambaugh, R.L.: A Macroscopic View of the Melt-Blowing Process for Producing Microfibers. Ind. Eng. Chem. Res. 27(12), 2363–2372 (1988). https://doi.org/10.1021/ie00084a021

    Article  CAS  Google Scholar 

  15. Gahan R., Zguris G.C.: A review of the melt blown process. In: In Battery Conference on Applications and Advances, The Fifteenth Annual IEEE, New Orleans (USA) 2000, pp. 145–149

    Google Scholar 

  16. Bryner, M.: Extremely high liquid barrier fabrics. U.S. Patent US20040116028A1, 17 June 2004

    Google Scholar 

  17. Prentice, J.S.: Laminated non-woven sheet. U.S. Patent US4078124A, 7 March 1978

    Google Scholar 

  18. Grier-Idris, C.: Conformable surgical face mask. U.S. Patent US4662005A, 5 May 1987

    Google Scholar 

  19. Coates, D.A., Smith, R.J.M.: Disposable surgical face mask and method of producing it. United Kingdom Patent EP0051616B1, 13 May 1981

    Google Scholar 

  20. Bodaghi, H., Erickson, S.C., Purrington, S.M., Meyer, D.E., Krueger, D.L.: Oriented melt-blown fibers, processes for making such fibers and webs made from such fibers. U.S. Patent US5993943A, 30 November 1999

    Google Scholar 

  21. Van Paridon, H., Tynys, A., Fiebig, J., Parkinson, M.: Terpolymer for melt blown media for air filtration. U.S. Patent US9255349B2, 9 February 2016

    Google Scholar 

  22. Haubruge, H., Pavy, G., Standaert, A.: Fibres and nonwoven prepared from polypropylene having a large dispersity index. U.S. Patent US8283426B2, 9 October 2012

    Google Scholar 

  23. Demain, A.: Polypropylene fibres. U.S. Patent US6646051B1, 11 November 2003

    Google Scholar 

  24. Barboza, S.D., Hoffman Jr, C.S., Kopp, C.V., Schmitt, R.J., Shucosky, A.C.: Melt-blown filtration media having integrally co-located support and filtration fibers. U.S. Patent US5681469A, 28 October 1997

    Google Scholar 

  25. Wilson, A.: The formation of dry, wet, spunlaid and other types of nonwovens. In: Chapman, R.A. (ed.) Applications of Nonwovens in Technical Textiles, pp. 3–17. Woodhead Publishing, United Kingdom (2010)

    Chapter  Google Scholar 

  26. Reicofil, R. https://www.reicofil.com/en/pages/meltblown_lines. Accessed 18 July 2020

  27. Zhejiang CL Non Woven Machinery Co Ltd Meltblown non woven fabric making machine. https://www.hellononwoven.com/melt-blown-non-woven-fabric-making-machine/cl-m-melt-blown-non-woven-fabric-making-machine-line. Accessed December 2022

  28. Sun, F., Li, T.-T., Ren, H., Jiang, Q., Peng, H.-K., Lin, Q., Lou, C.-W., Lin, J.-H.: PP/TiO2 Melt-Blown Membranes for Oil/Water Separation and Photocatalysis: Manufacturing Techniques and Property Evaluations. Polymers 11(5), 775 (2019). https://doi.org/10.3390/polym11050775

    Article  CAS  Google Scholar 

  29. Ellison, C.J., Phatak, A., Giles, D.W., Macosko, C.W., Bates, F.S.: Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer 48(11), 3306–3316 (2007). https://doi.org/10.1016/j.polymer.2007.04.005

    Article  CAS  Google Scholar 

  30. Yu, Y., Xiong, S., Huang, H., Zhao, L., Nie, K., Chen, S., Xu, J., Yin, X., Wang, H., Wang, L.: Fabrication and application of poly (phenylene sulfide) ultrafine fiber. React. Funct. Polym. 150, 104539 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104539

    Article  CAS  Google Scholar 

  31. Zhao, R., Wadsworth, L.C.: Attenuating PP/PET bicomponent melt blown microfibers. Polym. Eng. Sci. 43(2), 463–469 (2003). https://doi.org/10.1002/pen.10037

    Article  CAS  Google Scholar 

  32. Zhang, D., Sun, C., Beard, J., Brown, H., Carson, I., Hwo, C.: Development and characterization of poly(trimethylene terephthalate)-based bicomponent meltblown nonwovens. J. Appl. Polym. Sci. 83(6), 1280–1287 (2002). https://doi.org/10.1002/app.2295

    Article  CAS  Google Scholar 

  33. Yesil, Y., Bhat, G.S.: Structure and mechanical properties of polyethylene melt blown nonwovens. International Journal of Clothing Science and Technology 28(6), 780–793 (2016). https://doi.org/10.1108/IJCST-09-2015-0099

    Article  Google Scholar 

  34. Brochocka, A.: Efficiency of electret polycarbonate nonwovens in respiratory protection against nanoparticles. Autex Research Journal 17(2), 188–198 (2017). https://doi.org/10.1515/aut-2017-0004

    Article  CAS  Google Scholar 

  35. Safranski, D.L., Boothby, J.M., Kelly, C.N., Beatty, K., Lakhera, N., Frick, C.P., Lin, A., Guldberg, R.E., Griffis, J.C.: Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens. J Mech Behav Biomed Mater 62, 545–555 (2016). https://doi.org/10.1016/j.jmbbm.2016.05.038

    Article  CAS  Google Scholar 

  36. Wadsworth, L.C., Khan, A.Y.: Meltblowing of ethylene and fluorinated ethylene copolymers. U.S. Patent US5470663A, 28 November 1995

    Google Scholar 

  37. Ruamsuk, R., Takarada, W., Kikutani, T.: Fine filament formation behavior of polymethylpentene and polypropylene near spinneret in melt blowing process. Int. Polym. Proc. 31(2), 217–223 (2016). https://doi.org/10.3139/217.3163

    Article  CAS  Google Scholar 

  38. Hammonds, R.L., Gazzola, W.H., Benson, R.S.: Physical and thermal characterization of polylactic acid meltblown nonwovens. Journal of Applied Polymer Science 131(15) (2014). https://doi.org/10.1002/app.40593

  39. Yu, Y., Shim, E.: Process-structure-property relationship of meltblown poly (styrene–ethylene/butylene–styrene) nonwovens. J. Appl. Polym. Sci. 138(16), 50230 (2021). https://doi.org/10.1002/app.50230

    Article  CAS  Google Scholar 

  40. Henry, J.J., Goldbach, J., Stabler, S., Devisme, S., Chauveau, J.: Advancements in the production of meltblown fibres. Filtration + Separation 53(3), 36–40 (2016). https://doi.org/10.1016/S0015-1882(16)30123-9

  41. Zhang, D., Sun, C., Beard, J., Zhao, W., Carson, I., Hwo, C.: Innovative polytrimethylene terephthalate (PTT) polymers for technical nonwovens. J. Ind. Text. 31(3), 159–178 (2002). https://doi.org/10.1106/152808302025393

    Article  CAS  Google Scholar 

  42. Müller, D.H., Krobjilowski, A.: Meltblown fabrics from biodegradable polymers. Int. Nonwovens J. 10(1), 11–17 (2001). https://doi.org/10.1177/1558925001os-1000106

    Article  Google Scholar 

  43. Bhat, G., Malkan, S.: Polymer-laid web formation. In: Russell, S.J. (ed.) Handbook of nonwovens, vol. 760. pp. 180–182. Cambridge (UK) (2007)

    Google Scholar 

  44. Chen, T., Wang, X., Huang, X.: Effects of Processing Parameters on the Fiber Diameter of Melt Blown Nonwoven Fabrics. Text. Res. J. 75(1), 76–80 (2016). https://doi.org/10.1177/004051750507500114

    Article  Google Scholar 

  45. Yarin A. L., Pourdeyhimi B., Ramakrishna S.: Melt- and solution blowing. In: Yarin A. L., Pourdeyhimi B., Ramakrishna S. (eds.) Fundamentals and applications of micro and nanofibers. pp. 90–92 Cambridge University Press UK (2013)

    Google Scholar 

  46. Jones A. M.: A Study of Resin Melt Flow Rate And Polydispersity Effects On The Mechanical Properties of Melt Blown Polypropylene Webs. In: Fourth International Conference on Polypropylene Fibers and Textiles, Nottingham (UK), September 23–25 1987

    Google Scholar 

  47. Tan, D.H., Zhou, C., Ellison, C.J., Kumar, S., Macosko, C.W., Bates, F.S.: Meltblown fibers: Influence of viscosity and elasticity on diameter distribution. J. Nonnewton. Fluid Mech. 165(15–16), 892–900 (2010). https://doi.org/10.1016/j.jnnfm.2010.04.012

    Article  CAS  Google Scholar 

  48. Zhang, D., Sun, C., Beard, J., Brown, H., Carson, I., Hwo, C.: Development and characterization of poly (trimethylene terephthalate)-based bicomponent meltblown nonwovens. J. Appl. Polym. Sci. 83(6), 1280–1287 (2002). https://doi.org/10.1002/app.2295

    Article  CAS  Google Scholar 

  49. Xu, Q.Y., Wang, Y.M.: The Effects of Processing Parameter on Melt-Blown Filtration Materials. Advanced Materials Research 650, 78–84 (2013). https://doi.org/10.4028/www.scientific.net/AMR.650.78

    Article  CAS  Google Scholar 

  50. Guo, M., Liang, H., Luo, Z., Chen, Q., Wei, W.: Study on melt-blown processing, web structure of polypropylene nonwovens and its BTX adsorption. Fibers and Polymers 17(2), 257–265 (2016). https://doi.org/10.1007/s12221-016-5592-y

    Article  CAS  Google Scholar 

  51. Marla, V.T., Shambaugh, R.L.: Modeling of the Melt Blowing Performance of Slot Dies. Ind. Eng. Chem. Res. 43(11), 2789–2797 (2004). https://doi.org/10.1021/ie030767a

    Article  CAS  Google Scholar 

  52. Bansal, V., Shambaugh, R.L.: On-line Determination of Diameter and Temperature during Melt Blowing of Polypropylene. Ind. Eng. Chem. Res. 37(5), 1799 (1998). https://doi.org/10.1021/ie9709042

    Article  CAS  Google Scholar 

  53. Drabek, J., Zatloukal, M., Martyn, M.: Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes. J. Nonnewton. Fluid Mech. 251, 107–118 (2018). https://doi.org/10.1016/j.jnnfm.2017.11.009

    Article  CAS  Google Scholar 

  54. Lee, Y., Wadsworth, L.C.: Effects of melt-blowing process conditions on morphological and mechanical properties of polypropylene webs. Polymer 33(6), 1200–1209 (1992). https://doi.org/10.1016/0032-3861(92)90764-N

    Article  CAS  Google Scholar 

  55. Xie, S., Han, W., Jiang, G., Chen, C.: Turbulent air flow field in slot-die melt blowing for manufacturing microfibrous nonwoven materials. J. Mater. Sci. 53(9), 6991–7003 (2018). https://doi.org/10.1007/s10853-018-2008-y

    Article  CAS  Google Scholar 

  56. Xie, S., Zheng, Y., Zeng, Y.: Influence of Die Geometry on Fiber Motion and Fiber Attenuation in the Melt-Blowing Process. Ind. Eng. Chem. Res. 53(32), 12866–12871 (2014). https://doi.org/10.1021/ie5025529

    Article  CAS  Google Scholar 

  57. Moore, E.M., Papavassiliou, D.V., Shambaugh, R.L.: Air Velocity, Air Temperature, Fiber Vibration and Fiber Diameter Measurements on a Practical Melt Blowing Die. International Nonwovens Journal International Nonwovens Journal 13(3), 1558925004os-1558925013 (2004). https://doi.org/10.1177/1558925004os-1300309

  58. Drabek, J., Zatloukal, M.: Meltblown technology for production of polymeric microfibers/nanofibers: A review. Phys. Fluids 31(9), 091301 (2019). https://doi.org/10.1063/1.5116336

    Article  CAS  Google Scholar 

  59. Bresee, R.R., Qureshi, U.A.: Fiber Motion near the Collector during Melt Blowing: Part 2 — Fly Formation. Int. Nonwovens J. 11(3), 21–27 (2002). https://doi.org/10.1177/1558925002os-01100306

    Article  CAS  Google Scholar 

  60. Milligan, M.W., Haynes, B.D.: Empirical models for melt blowing. J. Appl. Polym. Sci. 58(1), 159–163 (1995). https://doi.org/10.1002/app.1995.070580117

    Article  CAS  Google Scholar 

  61. Uppal, R., Bhat, G., Eash, C., Akato, K.: Meltblown nanofiber media for enhanced quality factor. Fibers and Polymers 14(4), 660–668 (2013). https://doi.org/10.1007/s12221-013-0660-z

    Article  CAS  Google Scholar 

  62. Milligan, M.W., Lu, F., Buntin, R.R., Wadsworth, L.C.: The use of crossflow to improve nonwoven melt-blown fibers. APP Journal of Applied Polymer Science 44(2), 279–288 (1992). https://doi.org/10.1002/app.1992.070440212

    Article  CAS  Google Scholar 

  63. Hao, X., Zeng, Y.: A review on the studies of air flow field and fiber formation process during melt blowing. Ind. Eng. Chem. Res. 58(27), 11624–11637 (2019). https://doi.org/10.1021/acs.iecr.9b01694

    Article  CAS  Google Scholar 

  64. Choi, K.J., Spruiell, J.E., Fellers, J.F., Wadsworth, L.C.: Strength properties of melt blown nonwoven webs. Polym. Eng. Sci. 28(2), 81–89 (1988). https://doi.org/10.1002/pen.760280204

    Article  CAS  Google Scholar 

  65. Bresee, R.R., Qureshi, A., Pelham, M.C.: Influence of processing conditions on melt blown web structure: part 2-primary airflow rate. Int. Nonwovens J. 14(2), 11–18 (2005). https://doi.org/10.1177/1558925005os-1400202

    Article  Google Scholar 

  66. Hassan, M.A., Yeom, B.Y., Wilkie, A., Pourdeyhimi, B., Khan, S.A.: Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 427, 336–344 (2013). https://doi.org/10.1016/j.memsci.2012.09.050

    Article  CAS  Google Scholar 

  67. Tyagi, M.K., Shambaugh, R.L.: Use of Oscillating Gas Jets in Fiber Processing. Ind. Eng. Chem. Res. 34(2), 656–660 (1995). https://doi.org/10.1021/ie00041a027

    Article  CAS  Google Scholar 

  68. Tan, D.H., Herman, P.K., Janakiraman, A., Bates, F.S., Kumar, S., Macosko, C.W.: Influence of Laval nozzles on the air flow field in melt blowing apparatus. Chem. Eng. Sci. 80, 342–348 (2012). https://doi.org/10.1016/j.ces.2012.06.020

    Article  CAS  Google Scholar 

  69. Xie, S., Zeng, Y.: Fiber spiral motion in a swirl die melt-blowing process. Fibers and Polymers 15(3), 553–559 (2014). https://doi.org/10.1007/s12221-014-0553-9

    Article  Google Scholar 

  70. Rawlins, J., Kang, J.: Fine liquid blowing: A high Reynolds number, high production rate nanofiber manufacturing technique. J. Appl. Polym. Sci. 136(17), 47384 (2019). https://doi.org/10.1002/app.47384

    Article  CAS  Google Scholar 

  71. Jirsák, O., Wadsworth, L.C.: Nonwoven Textiles. Carolina Academic Press, USA (1999)

    Google Scholar 

  72. Shambaugh, B.R., Papavassiliou, D.V., Shambaugh, R.L.: Modifying air fields to improve melt blowing. Ind. Eng. Chem. Res. 51(8), 3472–3482 (2012). https://doi.org/10.1021/ie202501u

    Article  CAS  Google Scholar 

  73. Bo, Z.: Production of polypropylene melt blown nonwoven fabrics: Part I-numerical simulation and prediction of fibre diameter. Indian J. Fibre Text. Res. 37(3), 280–286 (2012)

    Google Scholar 

  74. Yin, H., Yan, Z., Ko, W.-C., Bresee, R.R.: Fundamental Description of the Melt Blowing Process. International Nonwovens Journal International Nonwovens Journal 9(4), 25–28 (2000). https://doi.org/10.1177/1558925000OS-900408

    Article  Google Scholar 

  75. Begenir, A., Michielsen, S., Pourdeyhimi, B.: Melt-blowing thermoplastic polyurethane and polyether-block-amide elastomers: Effect of processing conditions and crystallization on web properties. Polym. Eng. Sci. 49(7), 1340–1349 (2009). https://doi.org/10.1002/pen.21244

    Article  CAS  Google Scholar 

  76. Feng, J.: Preparation and properties of poly (lactic acid) fiber melt blown non-woven disordered mats. Mater. Lett. 189, 180–183 (2017). https://doi.org/10.1016/j.matlet.2016.12.013

    Article  CAS  Google Scholar 

  77. Bresee, R.R.: Fiber Motion Near The Collector During Melt Blowing Part 1: General Considerations. Int. Nonwovens J. 11(2), 27–34 (2002). https://doi.org/10.1177/1558925002OS-01100207

    Article  Google Scholar 

  78. Chen, T., Li, L., Huang, X.: Fiber diameter of polybutylene terephthalate melt-blown nonwovens. J. Appl. Polym. Sci. 97(4), 1750–1752 (2005). https://doi.org/10.1002/app.21932

    Article  CAS  Google Scholar 

  79. Bresee, R.R., Qureshi, U.A.: Influence of process Conditions on Melt Blown Web Structure. Part IV - Fiber Diameter. Journal of Engineered Fibers and Fabrics 1(1), 155892500600100 (2006). https://doi.org/10.1177/155892500600100103

  80. Peng, M., Jia, H., Jiang, L., Zhou, Y., Ma, J.: Study on structure and property of PP/TPU melt-blown nonwovens. The Journal of The Textile Institute 110(3), 468–475 (2018). https://doi.org/10.1080/00405000.2018.1485461

    Article  CAS  Google Scholar 

  81. Lee, Y.E., Wadsworth, L.C.: Fiber and web formation of melt-blown thermoplastic polyurethane polymers. J. Appl. Polym. Sci. 105(6), 3724–3727 (2007). https://doi.org/10.1002/app.26432

    Article  CAS  Google Scholar 

  82. Kulas, D.G., Zolghadr, A., Chaudhari, U.S., Shonnard, D.R.: Economic and environmental analysis of plastics pyrolysis after secondary sortation of mixed plastic waste. J. Clean. Prod. 384, 135542 (2023). https://doi.org/10.1016/j.jclepro.2022.135542

    Article  CAS  Google Scholar 

  83. Ronkay, F., Molnar, B., Gere, D., Czigany, T.: Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Manage. 119, 101–110 (2021). https://doi.org/10.1016/j.wasman.2020.09.029

    Article  CAS  Google Scholar 

  84. Lebreton, L., Andrady, A.: Future scenarios of global plastic waste generation and disposal. Palgrave Communications 5(1), 6 (2019). https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  85. T. Phelps, B., Sam, C.: Masks on the Beach: The impact of COVID-19 on marine plastic pollution. In., pp. 12–14. (2020)

    Google Scholar 

  86. Uddin, M.S., Abedin, M.Z., Ali, M.Y.: Fabrication and characterization of plastic tiles from plastic wastes in Bangladesh. AIP Conf. Proc. 2643(1), 050048 (2023). https://doi.org/10.1063/5.0110368

    Article  CAS  Google Scholar 

  87. Tarrahi, R., Fathi, Z., Seydibeyoğlu, M.Ö., Doustkhah, E., Khataee, A.: Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int. J. Biol. Macromol. 146, 596–619 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.181

    Article  CAS  Google Scholar 

  88. Mayilswamy, N., Kandasubramanian, B.: Green composites prepared from soy protein, polylactic acid (PLA), starch, cellulose, chitin: a review. Emergent Materials (2022). https://doi.org/10.1007/s42247-022-00354-2

    Article  Google Scholar 

  89. Pellis, A., Malinconico, M., Guarneri, A., Gardossi, L.: Renewable polymers and plastics: Performance beyond the green. New Biotechnol. 60, 146–158 (2021). https://doi.org/10.1016/j.nbt.2020.10.003

    Article  CAS  Google Scholar 

  90. Lowe, C.E.: Preparation of high molecular weight polyhydroxyacetic ester. U.S. Patent US2668162A, 2 February 1954

    Google Scholar 

  91. Skoczinski, P., Carus, M., De Guzman, D., Ravenstijn, J., Käb, H., Baltus, W., Chinthapalli, R., Raschka, A.: Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. In. Nova-Institute, Hürth, German, (2021)

    Google Scholar 

  92. Martínez Silva, P., Nanny, M.A.: Impact of Microplastic Fibers from the Degradation of Nonwoven Synthetic Textiles to the Magdalena River Water Column and River Sediments by the City of Neiva, Huila (Colombia). Water 12(4), 1210 (2020). https://doi.org/10.3390/w12041210

    Article  CAS  Google Scholar 

  93. Arrieta, M.P., Perdiguero, M., Fiori, S., Kenny, J.M., Peponi, L.: Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polym. Degrad. Stab. 179, 109226 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109226

    Article  CAS  Google Scholar 

  94. Wang, L., Gao, Y., Xiong, J., Shao, W., Cui, C., Sun, N., Zhang, Y., Chang, S., Han, P., Liu, F.: Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly (lactic acid) electrospinning. J. Colloid Interface Sci. 606, 961–970 (2022). https://doi.org/10.1016/j.jcis.2021.08.079

    Article  CAS  Google Scholar 

  95. Choi, S., Jeon, H., Jang, M., Kim, H., Shin, G., Koo, J.M., Lee, M., Sung, H.K., Eom, Y., Yang, H.S.: Biodegradable, efficient, and breathable multi-use face mask filter. Advanced Science 8(6), 2003155 (2021). https://doi.org/10.1002/advs.202003155

    Article  CAS  Google Scholar 

  96. Gao, H., Liu, G., Guan, J., Wang, X., Yu, J., Ding, B.: Biodegradable Hydro-charging Polylactic Acid Melt-blown Nonwovens with Efficient PM0.3 Removal. Chemical Engineering Journal, 141412 (2023). https://doi.org/10.1016/j.cej.2023.141412

  97. Dharmalingam, S., Hayes, D.G., Wadsworth, L.C., Dunlap, R.N., DeBruyn, J.M., Lee, J., Wszelaki, A.L.: Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J. Polym. Environ. 23(3), 302–315 (2015). https://doi.org/10.1007/s10924-015-0716-9

    Article  CAS  Google Scholar 

  98. Kara, Y., Molnár, K.: Decomposition Behavior of Stereocomplex PLA Melt-Blown Fine Fiber Mats in Water and in Compost. J. Polym. Environ. (2022). https://doi.org/10.1007/s10924-022-02694-w

    Article  Google Scholar 

  99. Liu, J., Pui, D.Y., Wang, J.: Removal of airborne nanoparticles by membrane coated filters. Sci. Total Environ. 409(22), 4868–4874 (2011). https://doi.org/10.1016/j.scitotenv.2011.08.011

    Article  CAS  Google Scholar 

  100. Hutten, I.M.: Properties of Nonwoven Filter Media. In: Hutten, I.M. (ed.) Handbook of Nonwoven Filter Media, pp. 71–102. Butterworth-Heinemann, Oxford (2007)

    Chapter  Google Scholar 

  101. R, M., J, S.: NIOSH Fact Sheet. https://www.cdc.gov/niosh/docs/2011-179/pdfs/2011-179.pdf (2011). Accessed 11 June 2020

  102. Racz, L., Yamamoto, D.P., Eninger, R.M.: Handbook of respiratory protection: Safeguarding against current and emerging hazards. CRC Press, (2017)

    Google Scholar 

  103. Standardization, E.C.f.: Respiratory protective devices - Filtering half masks to protect against particles - Requirements, testing, marking. In. EN 149:2001+A1:2009. Brussels, (2009)

    Google Scholar 

  104. Standardization, E.C.f.: Respiratory protective devices. Methods of test. Determination of particle filter penetration. In. EN 13274–7:2008. European Committee for Standardization Brussels, (2008)

    Google Scholar 

  105. Tsai, P., Yan, Y.: The influence of fiber and fabric properties on nonwoven performance. In: Applications of nonwovens in technical textiles. pp. 18–45. Elsevier, (2010)

    Google Scholar 

  106. Yesil, Y., Bhat, G.S.: Porosity and barrier properties of polyethylene meltblown nonwovens. The Journal of The Textile Institute 108(6), 1035–1040 (2016). https://doi.org/10.1080/00405000.2016.1218109

    Article  CAS  Google Scholar 

  107. He, H., Gao, M., Illés, B., Molnar, K.: 3D Printed and Electrospun, Transparent, Hierarchical Polylactic Acid Mask Nanoporous Filter. International Journal of Bioprinting 6(4) (2020). https://doi.org/10.18063/ijb.v6i4.278

  108. Motyl, E., Lowkis, B.: Effect of air humidity on charge decay and lifetime of PP electret nonwovens. Fibres and Textiles in Eastern Europe 14(5), 59 (2006)

    Google Scholar 

  109. Mao, N.: Nonwoven fabric filters. In: Kellie, G. (ed.) Advances in Technical Nonwovens, pp. 273–310. Woodhead Publishing, United Kingdom (2016)

    Chapter  Google Scholar 

  110. Cheng, S., Muhaiminul, A.S., Yue, Z., Wang, Y., Xiao, Y., Militky, J., Prasad, M., Zhu, G.: Effect of Temperature on the Structure and Filtration Performance of Polypropylene Melt-Blown Nonwovens. Autex Research Journal 1(ahead-of-print) (2020). https://doi.org/10.2478/aut-2019-0067

  111. Thomas, D., Contal, P., Renaudin, V., Penicot, P., Leclerc, D., Vendel, J.: Modelling pressure drop in HEPA filters during dynamic filtration. J. Aerosol Sci. 30(2), 235–246 (1999). https://doi.org/10.1016/S0021-8502(98)00036-6

    Article  CAS  Google Scholar 

  112. Xiao, Y., Sakib, N., Yue, Z., Wang, Y., You, J., Militky, J., Prasad, M., Zhu, G.: Study on the Relationship Between Structure Parameters and Filtration Performance of Polypropylene Meltblown Nonwovens. Autex Research Journal 1(ahead-of-print) (2019). https://doi.org/10.2478/aut-2019-0029

  113. Wang, Q., Maze, B., Tafreshi, H.V., Pourdeyhimi, B.: A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media. Chem. Eng. Sci. 61(15), 4871–4883 (2006). https://doi.org/10.1016/j.ces.2006.03.039

    Article  CAS  Google Scholar 

  114. Jaganathan, S., Vahedi Tafreshi, H., Pourdeyhimi, B.: On the pressure drop prediction of filter media composed of fibers with bimodal diameter distributions. Powder Technol. 181(1), 89–95 (2008). https://doi.org/10.1016/j.powtec.2007.07.002

    Article  CAS  Google Scholar 

  115. Yang, C., Jiang, X., Gao, X., Wang, H., Li, L., Hussain, N., Xie, J., Cheng, Z., Li, Z., Yan, J., Zhong, M., Zhao, L., Wu, H.: Saving 80% Polypropylene in Facemasks by Laser-Assisted Melt-Blown Nanofibers. Nano Lett. 22(17), 7212–7219 (2022). https://doi.org/10.1021/acs.nanolett.2c02693

    Article  CAS  Google Scholar 

  116. Ghosh, S.: Composite nonwovens in medical applications. In: Das, D., Pourdeyhimi, B. (eds.) Composite Non-Woven Materials, pp. 211–224. Woodhead Publishing, UK (2014)

    Chapter  Google Scholar 

  117. Mukhopadhyay, A.: Composite nonwovens in filters: applications. In: Das, D., Pourdeyhimi, B. (eds.) Composite Non-Woven Materials, pp. 164–210. Woodhead Publishing, UK (2014)

    Chapter  Google Scholar 

  118. Das, D., Pradhan, A.K., Chattopadhyay, R., Singh, S.N.: Composite Nonwovens. Text. Prog. 44(1), 1–84 (2012). https://doi.org/10.1080/00405167.2012.670014

    Article  Google Scholar 

  119. Zhu, X., Dai, Z., Xu, K., Zhao, Y., Ke, Q.: Fabrication of Multifunctional Filters via Online Incorporating Nano-TiO2 into Spun-Bonded/Melt-Blown Nonwovens for Air Filtration and Toluene Degradation. Macromol. Mater. Eng. 304(12), 1900350 (2019). https://doi.org/10.1002/mame.201900350

    Article  CAS  Google Scholar 

  120. Kothari, V.K., Newton, A.: The air-permeability of non-woven fabrics. J. Text. Inst. 65(10), 525–531 (1974). https://doi.org/10.1080/00405007408630140

    Article  Google Scholar 

  121. Góra, A., Sahay, R., Thavasi, V., Ramakrishna, S.: Melt-Electrospun Fibers for Advances in Biomedical Engineering, Clean Energy, Filtration, and Separation. Polym. Rev. 51(3), 265–287 (2011). https://doi.org/10.1080/15583724.2011.594196

    Article  CAS  Google Scholar 

  122. Albrecht, W., Fuchs, H., Kittelmann, W.: Nonwoven Fabrics : Raw Materials, Manufacture, Applications, Characteristics, Testing Processes. (2002).

    Google Scholar 

  123. Kara, Y., Akbulut, H.: Mechanical behavior of helical springs made of carbon nanotube additive epoxy composite reinforced with carbon fiber. Journal of the Faculty of Engineering and Architecture of Gazi University 32(2), 417–427 (2017). https://doi.org/10.17341/gazimmfd.322166

  124. Xin, Y., Nesser, H., Zhou, J., Lubineau, G.: Evolution of the Seebeck effect in nanoparticle-percolated networks under applied strain. Appl. Mater. Today 28, 101503 (2022). https://doi.org/10.1016/j.apmt.2022.101503

    Article  Google Scholar 

  125. Abuaf, M., Mastai, Y.: Electrospinning of polymer nanofibers based on chiral polymeric nanoparticles. Polym. Adv. Technol. (2022). https://doi.org/10.1002/pat.5666

    Article  Google Scholar 

  126. Karbowniczek, J.E., Ura, D.P., Stachewicz, U.: Nanoparticles distribution and agglomeration analysis in electrospun fiber based composites for desired mechanical performance of poly(3-hydroxybuty-rate-co-3-hydroxyvalerate (PHBV) scaffolds with hydroxyapatite (HA) and titanium dioxide (TiO2) towards medical applications. Compos. B Eng. 241, 110011 (2022). https://doi.org/10.1016/j.compositesb.2022.110011

    Article  CAS  Google Scholar 

  127. Biswas, M.C., Chowdhury, A., Hossain, M.M., Hossain, M.K.: 11 - Applications, drawbacks, and future scope of nanoparticle-based polymer composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Yashas Gowda, T.G., Siengchin, S., Seydibeyoglu, M.O. (eds.) Nanoparticle-Based Polymer Composites. pp. 243–275. Woodhead Publishing, (2022)

    Google Scholar 

  128. Rivero, P.J., Urrutia, A., Goicoechea, J., Arregui, F.J.: Nanomaterials for Functional Textiles and Fibers. Nanoscale Res. Lett. 10(1), 501 (2015). https://doi.org/10.1186/s11671-015-1195-6

    Article  CAS  Google Scholar 

  129. Han, M.-C., He, H.-W., Kong, W.-K., Dong, K., Wang, B.-Y., Yan, X., Wang, L.-M., Ning, X.: High-performance Electret and Antibacterial Polypropylene Meltblown Nonwoven Materials Doped with Boehmite and ZnO Nanoparticles for Air Filtration. Fibers and Polymers 23(7), 1947–1955 (2022). https://doi.org/10.1007/s12221-022-4786-8

    Article  CAS  Google Scholar 

  130. Cabello-Alvarado, C., Andrade-Guel, M., Medellin-Banda, D.I., Ávila-Orta, C.A., Cadenas-Pliego, G., Sáenz-Galindo, A., Radillo-Radillo, R., Lara-Sánchez, J.F., Melo-Lopez, L.: Non-woven fabrics based on Nylon 6/carbon black-graphene nanoplatelets obtained by melt-blowing for adsorption of urea, uric acid and creatinine. Mater. Lett. 320, 132382 (2022). https://doi.org/10.1016/j.matlet.2022.132382

    Article  CAS  Google Scholar 

  131. Nasir, A., Kausar, A., Younus, A.: A Review on Preparation, Properties and Applications of Polymeric Nanoparticle-Based Materials. Polym.-Plast. Technol. Eng. 54(4), 325–341 (2015). https://doi.org/10.1080/03602559.2014.958780

    Article  CAS  Google Scholar 

  132. Hegde, R.R., Bhat, G.S.: Nanoparticle effects on structure and properties of polypropylene meltblown webs. J. Appl. Polym. Sci. 115(2), 1062–1072 (2010). https://doi.org/10.1002/app.31089

    Article  CAS  Google Scholar 

  133. Cao, L., Su, D., Su, Z., Chen, X.: Fabrication of multiwalled carbon nanotube/polypropylene conductive fibrous membranes by melt electrospinning. Ind. Eng. Chem. Res. 53(6), 2308–2317 (2014). https://doi.org/10.1021/ie403746p

    Article  CAS  Google Scholar 

  134. Krucińska, I., Surma, B., Chrzanowski, M., Skrzetuska, E., Puchalski, M.: Application of melt-blown technology in the manufacturing of a solvent vapor-sensitive, non-woven fabric composed of poly(lactic acid) loaded with multi-walled carbon nanotubes. Text. Res. J. 83(8), 859–870 (2013). https://doi.org/10.1177/0040517512460293

    Article  CAS  Google Scholar 

  135. Dydek, K., Latko-Durałek, P., Boczkowska, A., Sałaciński, M., Kozera, R.: Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes. Compos. Sci. Technol. 173, 110–117 (2019). https://doi.org/10.1016/j.compscitech.2019.02.007

    Article  CAS  Google Scholar 

  136. Wang, G., Yu, D., Kelkar, A.D., Zhang, L.: Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci. 75, 73–107 (2017). https://doi.org/10.1016/j.progpolymsci.2017.08.002

    Article  CAS  Google Scholar 

  137. Kara, Y., Kovács, N.K., Nagy-György, P., Boros, R., Molnár, K.: A novel method and printhead for 3D printing combined nano-/microfiber solid structures. Addit. Manuf. 61, 103315 (2023). https://doi.org/10.1016/j.addma.2022.103315

    Article  CAS  Google Scholar 

  138. Kenry, Lim, C.T.: Nanofiber technology: current status and emerging developments. Progress in Polymer Science 70, 1–17 (2017). https://doi.org/10.1016/j.progpolymsci.2017.03.002

  139. Islam, M.Z., Sarker, M.E., Rahman, M.M., Islam, M.R., Ahmed, A.T.M.F., Mahmud, M.S., Syduzzaman, M.: Green composites from natural fibers and biopolymers: A review on processing, properties, and applications. J. Reinf. Plast. Compos. 41(13–14), 526–557 (2022). https://doi.org/10.1177/07316844211058708

    Article  CAS  Google Scholar 

  140. Jerpdal, L., Åkermo, M.: Influence of fibre shrinkage and stretching on the mechanical properties of self-reinforced poly(ethylene terephthalate) composite. J. Reinf. Plast. Compos. 33(17), 1644–1655 (2014). https://doi.org/10.1177/0731684414541018

    Article  CAS  Google Scholar 

  141. Hine, P., Astruc, A., Ward, I.: Hot compaction of polyethylene naphthalate. J. Appl. Polym. Sci. 93(2), 796–802 (2004). https://doi.org/10.1002/app.20517

    Article  Google Scholar 

  142. Kmetty, Á., Bárány, T., Karger-Kocsis, J.: Self-reinforced polymeric materials: A review. Prog. Polym. Sci. 35(10), 1288–1310 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.002

    Article  CAS  Google Scholar 

  143. Wu, N., Zheng, S., Yang, J., Gao, Y., Wang, J., Chen, L.: Three-dimensional orthogonal nonwoven single polymer composite. J. Reinf. Plast. Compos. 36(12), 889–899 (2017). https://doi.org/10.1177/0731684417694752

    Article  CAS  Google Scholar 

  144. Wang, J., Zhang, Q., Cheng, Y., Song, F., Ding, Y., Shao, M.: Self-reinforced composites based on polypropylene fiber and graphene nano-platelets/polypropylene film. Carbon 189, 586–595 (2022). https://doi.org/10.1016/j.carbon.2021.12.098

    Article  CAS  Google Scholar 

  145. Hine, P., Olley, R., Ward, I.: The use of interleaved films for optimising the production and properties of hot compacted, self reinforced polymer composites. Compos. Sci. Technol. 68(6), 1413–1421 (2008). https://doi.org/10.1016/j.compscitech.2007.11.003

    Article  CAS  Google Scholar 

  146. Capiati, N.J., Porter, R.S.: The concept of one polymer composites modelled with high density polyethylene. J. Mater. Sci. 10(10), 1671–1677 (1975)

    Article  CAS  Google Scholar 

  147. Romhany, G., Barany, T., Czigany, T., Karger-Kocsis, J.: Fracture and failure behavior of fabric-reinforced all-poly (propylene) composite (Curv®). Polym. Adv. Technol. 18(2), 90–96 (2007)

    Article  CAS  Google Scholar 

  148. Chen, J., Wu, C., Pu, F., Chiu, C.: Fabrication and mechanical properties of self-reinforced poly (ethylene terephthalate) composites. Express Polymer Letters 5(3) (2011).

    Google Scholar 

  149. Mészáros, L., Kara, Y., Fekete, T., Molnár, K.: Development of self-reinforced low-density polyethylene using γ-irradiation cross-linked polyethylene fibres. Radiat. Phys. Chem. 170, 108655 (2020). https://doi.org/10.1016/j.radphyschem.2019.108655

    Article  CAS  Google Scholar 

  150. Matabola, K., Vries, A., Moolman, F., Luyt, A.: Single polymer composites: A review. J. Mater. Sci. 44, 6213–6222 (2009). https://doi.org/10.1007/s10853-009-3792-1

    Article  CAS  Google Scholar 

  151. Lan, B., Liu, Y., Mo, S., He, M., Zhai, L., Fan, L.: Interlaminar Fracture Behavior of Carbon Fiber/Polyimide Composites Toughened by Interleaving Thermoplastic Polyimide Fiber Veils. Materials 14(10), 2695 (2021). https://doi.org/10.3390/ma14102695

    Article  CAS  Google Scholar 

  152. Somord, K., Suwantong, O., Tawichai, N., Peijs, T., Soykeabkaew, N.: Self-reinforced poly (lactic acid) nanocomposites of high toughness. Polymer 103, 347–352 (2016)

    Article  CAS  Google Scholar 

  153. Matabola, K., de Vries, A., Luyt, A., Kumar, R.: Studies on single polymer composites of poly (methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties. eXPRESS Polymer Letters 5(7), 635–642 (2011).

    Google Scholar 

  154. Li, B., Pan, S., Yuan, H., Zhang, Y.: Optical and mechanical anisotropies of aligned electrospun nanofibers reinforced transparent PMMA nanocomposites. Compos. A Appl. Sci. Manuf. 90, 380–389 (2016)

    Article  CAS  Google Scholar 

  155. Zhao, Y., Ma, X., Xu, T., Salem, D.R., Fong, H.: Hybrid multi-scale thermoplastic composites reinforced with interleaved nanofiber mats using in-situ polymerization of cyclic butylene terephthalate. Compos. Commun. 12, 91–97 (2019). https://doi.org/10.1016/j.coco.2019.01.005

    Article  Google Scholar 

  156. Stachewicz, U., Modaresifar, F., Bailey, R.J., Peijs, T., Barber, A.H.: Manufacture of void-free electrospun polymer nanofiber composites with optimized mechanical properties. ACS Appl. Mater. Interfaces. 4(5), 2577–2582 (2012)

    Article  CAS  Google Scholar 

  157. Bárány, T., Karger-Kocsis, J., Czigány, T.: Development and characterization of self-reinforced poly (propylene) composites: carded mat reinforcement. Polym. Adv. Technol. 17(9–10), 818–824 (2006). https://doi.org/10.1002/pat.813

    Article  CAS  Google Scholar 

  158. Kiss, Z., Temesi, T., Bitay, E., Bárány, T., Czigány, T.: Ultrasonic welding of all-polypropylene composites. J. Appl. Polym. Sci. 137(24), 48799 (2020). https://doi.org/10.1002/app.48799

    Article  CAS  Google Scholar 

  159. Fakirov, S.: Nano-and microfibrillar single-polymer composites: a review. Macromol. Mater. Eng. 298(1), 9–32 (2013). https://doi.org/10.1002/mame.201200226

    Article  CAS  Google Scholar 

  160. Cheon, J., Kim, M.: Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber. Compos. B Eng. 217, 108872 (2021). https://doi.org/10.1016/j.compositesb.2021.108872

    Article  CAS  Google Scholar 

  161. Beylergil, B., Tanoğlu, M., Aktaş, E.: Enhancement of interlaminar fracture toughness of carbon fiber–epoxy composites using polyamide-6, 6 electrospun nanofibers. J. Appl. Polym. Sci. 134(35), 45244 (2017). https://doi.org/10.1002/app.45244

    Article  CAS  Google Scholar 

  162. Kwon, D.-J., Kwon, I.-J., Milam-Guerrero, J., Yang, S.B., Yeum, J.H., Choi, H.H.: Aramid nanofiber-reinforced multilayer electromagnetic-interference (EMI) shielding composites with high interfacial durability. Mater. Des. 215, 110452 (2022). https://doi.org/10.1016/j.matdes.2022.110452

    Article  CAS  Google Scholar 

  163. Li, T., Wang, Z., Zhang, H., Hu, Z., Yu, J., Wang, Y.: Effect of aramid nanofibers on interfacial properties of high performance fiber reinforced composites. Compos. Interfaces 29(3), 312–326 (2022). https://doi.org/10.1080/09276440.2021.1942668

    Article  CAS  Google Scholar 

  164. Wang, C., Wu, Y.-J., Fang, C.-Y., Tsai, C.-W.: Electrospun nanofiber-reinforced polypropylene composites: nucleating ability of nanofibers. Compos. Sci. Technol. 126, 1–8 (2016). https://doi.org/10.1016/j.compscitech.2016.02.006

    Article  CAS  Google Scholar 

  165. He, H., Kara, Y., Molnar, K.: Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolut. Discovery 4(1), 7–11 (2019). https://doi.org/10.1556/2051.2018.00063

    Article  Google Scholar 

  166. Patel, P.R., Gundloori, R.V.N.: A review on electrospun nanofibers for multiple biomedical applications. Polym. Adv. Technol. 34(1), 44–63 (2023). https://doi.org/10.1002/pat.5896

    Article  CAS  Google Scholar 

  167. Mijares, J.L., Agaliotis, E., Bernal, C.R., Mollo, M.: Self-reinforced polypropylene composites based on low-cost commercial woven and non-woven fabrics. Polym. Adv. Technol. 29(1), 111–120 (2018). https://doi.org/10.1002/pat.4093

    Article  CAS  Google Scholar 

  168. Virág, Á.D., Kara, Y., Vas, L.M., Molnár, K.: Single polymer composites made of melt-blown PP mats and the modelling of the uniaxial tensile behaviour by the fibre bundle cells method. Fibers Polymers (2021). https://doi.org/10.1007/s12221-022-5138-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Kara .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kara, Y. (2023). Literature Overview. In: Polypropylene Melt-Blown Fiber Mats and Their Composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-32577-9_2

Download citation

Publish with us

Policies and ethics