Skip to main content

Impact of Prenatal Nicotine Exposure on Placental Function and Respiratory Neural Network Development

  • Chapter
  • First Online:
Advances in Maternal-Fetal Biomedicine

Abstract

Smoking during pregnancy is associated with multiple undesirable outcomes in infants, such as low birth weight, increased neonatal morbidity and mortality, and catastrophic conditions like sudden infant death syndrome (SIDS). Nicotine, the most addictive and teratogenic substance in tobacco smoke, reaches and crosses the placenta and can be accumulated in the amniotic fluid and distributed by fetal circulation, altering the cholinergic transmission by acting on the nicotinic acetylcholine receptors (nAChRs) expressed from very early gestational stages in the placenta and fetal tissue. Because nAChRs influence the establishment of feto-maternal circulation and the emergence of neuronal networks, prenatal nicotine exposure can lead to multiple alterations in newborns. In this mini-review, we discuss the undeniable effects of nicotine in the placenta and the respiratory neural network as examples of how prenatal nicotine and smoking exposition can affect brain development because dysfunction in this network is involved in SIDS etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 26 September 2023

    A correction has been published.

References

  • Abraham M, Alramadhan S, Iniguez C, Duijts L, Jaddoe VW, Den Dekker HT, Crozier S, Godfrey KM, Hindmarsh P, Vik T, Jacobsen GW, Hanke W, Sobala W, Devereux G, Turner S (2017) A systematic review of maternal smoking during pregnancy and fetal measurements with meta-analysis. PLoS One 12(2):e0170946

    PubMed  PubMed Central  Google Scholar 

  • ACOG_Committee (2020) Tobacco and nicotine cessation during pregnancy: ACOG Committee opinion summary, number 807. Obstet Gynecol 135(5):1244–1246

    Google Scholar 

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

    CAS  PubMed  Google Scholar 

  • Ali K, Wolff K, Peacock JL, Hannam S, Rafferty GF, Bhat R, Greenough A (2014) Ventilatory response to hypercarbia in newborns of smoking and substance-misusing mothers. Ann Am Thorac Soc 11(6):933–938

    PubMed  Google Scholar 

  • Anderson ME, Johnson DC, Batal HA (2005) Sudden infant death syndrome and prenatal maternal smoking: rising attributed risk in the Back to Sleep era. BMC Med 3:4

    PubMed  PubMed Central  Google Scholar 

  • Anderson TM, Lavista Ferres JM, Ren SY, Moon RY, Goldstein RD, Ramirez JM, Mitchell EA (2019) Maternal smoking before and during pregnancy and the risk of sudden unexpected infant death. Pediatrics 143(4)

    Google Scholar 

  • Anson-Cartwright L, Dawson K, Holmyard D, Fisher SJ, Lazzarini RA, Cross JC (2000) The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet 25(3):311–314

    CAS  PubMed  Google Scholar 

  • Aoyama Y, Toriumi K, Mouri A, Hattori T, Ueda E, Shimato A, Sakakibara N, Soh Y, Mamiya T, Nagai T, Kim HC, Hiramatsu M, Nabeshima T, Yamada K (2016) Prenatal nicotine exposure impairs the proliferation of neuronal progenitors, leading to fewer glutamatergic neurons in the medial prefrontal cortex. Neuropsychopharmacology 41(2):578–589

    CAS  PubMed  Google Scholar 

  • Arima N, Uchida Y, Yu R, Nakayama K, Nishina H (2013) Acetylcholine receptors regulate gene expression that is essential for primitive streak formation in murine embryoid bodies. Biochem Biophys Res Commun 435(3):447–453

    CAS  PubMed  Google Scholar 

  • Atluri P, Fleck MW, Shen Q, Mah SJ, Stadfelt D, Barnes W, Goderie SK, Temple S, Schneider AS (2001) Functional nicotinic acetylcholine receptor expression in stem and progenitor cells of the early embryonic mouse cerebral cortex. Dev Biol 240(1):143–156

    CAS  PubMed  Google Scholar 

  • Avraam J, Wu Y, Richerson GB (2020) Perinatal nicotine reduces chemosensitivity of medullary 5-HT neurons after maturation in culture. Neuroscience 446:80–93

    CAS  PubMed  Google Scholar 

  • Babaei S, Teichert-Kuliszewska K, Zhang Q, Jones N, Dumont DJ, Stewart DJ (2003) Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide. Am J Pathol 162(6):1927–1936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banderali G, Martelli A, Landi M, Moretti F, Betti F, Radaelli G, Lassandro C, Verduci E (2015) Short and long term health effects of parental tobacco smoking during pregnancy and lactation: a descriptive review. J Transl Med 13:327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckwith JB (1970) Discussion of the terminology and definition of the sudden infant death syndrome. In: Bergman AB, Beckwith JB, Ray CG (eds) Proceedings of the second international conference on causes of sudden death in infants. University of Washington Press, Seattle, pp 14–22

    Google Scholar 

  • Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benowitz NL, Jacob P 3rd (1984) Nicotine and carbon monoxide intake from high- and low-yield cigarettes. Clin Pharmacol Ther 36(2):265–270

    CAS  PubMed  Google Scholar 

  • Benowitz NL, Hukkanen J, Jacob P 3rd (2009) Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 192:29–60

    CAS  Google Scholar 

  • Bhuiyan MB, Murad F, Fant ME (2006) The placental cholinergic system: localization to the cytotrophoblast and modulation of nitric oxide. Cell Commun Signal 4:4

    PubMed  PubMed Central  Google Scholar 

  • Boura AL, Gude NM, King RG, Walters WA (1986) Acetylcholine output and foetal vascular resistance of human perfused placental cotyleda. Br J Pharmacol 88(2):301–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brady JP, McCann EM (1985) Control of ventilation in subsequent siblings of victims of sudden infant death syndrome. J Pediatr 106(2):212–217

    CAS  PubMed  Google Scholar 

  • Caleyachetty R, Tait CA, Kengne AP, Corvalan C, Uauy R, Echouffo-Tcheugui JB (2014) Tobacco use in pregnant women: analysis of data from Demographic and Health Surveys from 54 low-income and middle-income countries. Lancet Glob Health 2(9):e513–e520

    PubMed  Google Scholar 

  • Campos M, Bravo E, Eugenin J (2009) Respiratory dysfunctions induced by prenatal nicotine exposure. Clin Exp Pharmacol Physiol 36(12):1205–1217

    CAS  PubMed  Google Scholar 

  • CDCA P (2018) Sudden unexpected infant death and sudden Infant death syndrome: Data and statistics. https://www.cdc.gov/sids/data.htm

  • Cerda J, Bambs C, Vera C (2017) Infant morbidity and mortality attributable to prenatal smoking in Chile. Rev Panam Salud Publica 41:e106

    PubMed  PubMed Central  Google Scholar 

  • Cerpa VJ, Aylwin Mde L, Beltran-Castillo S, Bravo EU, Llona IR, Richerson GB, Eugenin JL (2015) The alteration of neonatal raphe neurons by prenatal-perinatal nicotine. Meaning for sudden infant death syndrome. Am J Respir Cell Mol Biol 53(4):489–499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HC, Gaddum JH (1933) Choline esters in tissue extracts. J Physiol 79(3):255–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CM, Chou HC, Huang LT (2015) Maternal nicotine exposure during gestation and lactation induces kidney injury and fibrosis in rat offspring. Pediatr Res 77(1–1):56–63

    PubMed  Google Scholar 

  • Ciuchta HP, Gautieri RF (1964) Effect of certain drugs on perfused human placenta. Iii. Sympathomimetics, acetylcholine, and histamine. J Pharm Sci 53:184–188

    CAS  PubMed  Google Scholar 

  • Coddou C, Bravo E, Eugenin J (2009) Alterations in cholinergic sensitivity of respiratory neurons induced by pre-natal nicotine: a mechanism for respiratory dysfunction in neonatal mice. Philos Trans R Soc Lond Ser B Biol Sci 364(1529):2527–2535

    CAS  Google Scholar 

  • Comline RS (1946) Synthesis of acetylcholine by non-nervous tissue. J Physiol 105:6

    CAS  PubMed  Google Scholar 

  • Cross JC, Werb Z, Fisher SJ (1994) Implantation and the placenta: key pieces of the development puzzle. Science 266(5190):1508–1518

    CAS  PubMed  Google Scholar 

  • Dietz PM, England LJ, Shapiro-Mendoza CK, Tong VT, Farr SL, Callaghan WM (2010) Infant morbidity and mortality attributable to prenatal smoking in the U.S. Am J Prev Med 39(1):45–52

    PubMed  Google Scholar 

  • Drachman DB (1974) Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. The role of acetylcholine as a neurotropic transmitter. Ann N Y Acad Sci 228(0):160–176

    CAS  PubMed  Google Scholar 

  • Duncan JR, Garland M, Stark RI, Myers MM, Fifer WP, Mokler DJ, Kinney HC (2015) Prenatal nicotine exposure selectively affects nicotinic receptor expression in primary and associative visual cortices of the fetal baboon. Brain Pathol 25(2):171–181

    CAS  PubMed  Google Scholar 

  • Dwyer JB, McQuown SC, Leslie FM (2009) The dynamic effects of nicotine on the developing brain. Pharmacol Ther 122(2):125–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eskenazi B, Prehn AW, Christianson RE (1995) Passive and active maternal smoking as measured by serum cotinine: the effect on birthweight. Am J Public Health 85(3):395–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin J, Nicholls JG (1997) Chemosensory and cholinergic stimulation of fictive respiration in isolated CNS of neonatal opossum. J Physiol 501(Pt 2):425–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin J, Otarola M, Bravo E, Coddou C, Cerpa V, Reyes-Parada M, Llona I, von Bernhardi R (2008) Prenatal to early postnatal nicotine exposure impairs central chemoreception and modifies breathing pattern in mouse neonates: a probable link to sudden infant death syndrome. J Neurosci 28(51):13907–13917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Euler USV (1938) Action of adrenaline, acetylcholine and other substances on nerve-free vessels (human placenta). J Physiol 93(2):129–143

    Google Scholar 

  • Fant M, Speeg KV Jr, Harper S, Harbison RD (1981) Cholinergic elements in a human choriocarcinoma cell line. Biochem Pharmacol 30(9):967–970

    CAS  PubMed  Google Scholar 

  • Fewell JE, Smith FG, Ng VK (2001) Prenatal exposure to nicotine impairs protective responses of rat pups to hypoxia in an age-dependent manner. Respir Physiol 127(1):61–73

    CAS  PubMed  Google Scholar 

  • Filiano JJ, Kinney HC (1994) A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate 65(3–4):194–197

    CAS  PubMed  Google Scholar 

  • Filiano JJ, Choi JC, Kinney HC (1990) Candidate cell populations for respiratory chemosensitive fields in the human infant medulla. J Comp Neurol 293(3):448–465

    CAS  PubMed  Google Scholar 

  • Frank MG, Srere H, Ledezma C, O’Hara B, Heller HC (2001) Prenatal nicotine alters vigilance states and AchR gene expression in the neonatal rat: implications for SIDS. Am J Physiol Regul Integr Comp Physiol 280(4):R1134–R1140

    CAS  PubMed  Google Scholar 

  • Fregosi RF, Pilarski JQ (2008) Prenatal nicotine exposure and development of nicotinic and fast amino acid-mediated neurotransmission in the control of breathing. Respir Physiol Neurobiol 164(1–2):80–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Genbacev O, McMaster MT, Zdravkovic T, Fisher SJ (2003) Disruption of oxygen-regulated responses underlies pathological changes in the placentas of women who smoke or who are passively exposed to smoke during pregnancy. Reprod Toxicol 17(5):509–518

    CAS  PubMed  Google Scholar 

  • Gennser G, Marsal K, Brantmark B (1975) Maternal smoking and fetal breathing movements. Am J Obstet Gynecol 123(8):861–867

    CAS  PubMed  Google Scholar 

  • Grando SA (2006) Cholinergic control of epidermal cohesion. Exp Dermatol 15(4):265–282

    CAS  PubMed  Google Scholar 

  • Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. Thromb Res 114(5–6):397–407

    CAS  PubMed  Google Scholar 

  • Hafstrom O, Milerad J, Sundell HW (2002) Prenatal nicotine exposure blunts the cardiorespiratory response to hypoxia in lambs. Am J Respir Crit Care Med 166(12 Pt 1):1544–1549

    PubMed  Google Scholar 

  • Haustein KO (1999) Cigarette smoking, nicotine and pregnancy. Int J Clin Pharmacol Ther 37(9):417–427

    CAS  PubMed  Google Scholar 

  • Hellstrom-Lindahl E, Court JA (2000) Nicotinic acetylcholine receptors during prenatal development and brain pathology in human aging. Behav Brain Res 113(1–2):159–168

    CAS  PubMed  Google Scholar 

  • Holloway AC, Salomon A, Soares MJ, Garnier V, Raha S, Sergent F, Nicholson CJ, Feige JJ, Benharouga M, Alfaidy N (2014) Characterization of the adverse effects of nicotine on placental development: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 306(4):E443–E456

    CAS  PubMed  Google Scholar 

  • Huang YH, Brown AR, Costy-Bennett S, Luo Z, Fregosi RF (2004) Influence of prenatal nicotine exposure on postnatal development of breathing pattern. Respir Physiol Neurobiol 143(1):1–8

    CAS  PubMed  Google Scholar 

  • Huang L, Wang Y, Zhang L, Zheng Z, Zhu T, Qu Y, Mu D (2018) Maternal smoking and attention-deficit/hyperactivity disorder in offspring: a meta-analysis. Pediatrics 141(1)

    Google Scholar 

  • Ino T (2010) Maternal smoking during pregnancy and offspring obesity: meta-analysis. Pediatr Int 52(1):94–99

    PubMed  Google Scholar 

  • Jauniaux E, Burton GJ (1992) The effect of smoking in pregnancy on early placental morphology. Obstet Gynecol 79(5 ( Pt 1)):645–648

    CAS  PubMed  Google Scholar 

  • Jauniaux E, Gulbis B, Acharya G, Thiry P, Rodeck C (1999) Maternal tobacco exposure and cotinine levels in fetal fluids in the first half of pregnancy. Obstet Gynecol 93(1):25–29

    CAS  PubMed  Google Scholar 

  • Joschko MA, Dreosti IE, Tulsi RS (1991) The teratogenic effects of nicotine in vitro in rats: a light and electron microscope study. Neurotoxicol Teratol 13(3):307–316

    CAS  PubMed  Google Scholar 

  • Kahn A, Groswasser J, Rebuffat E, Sottiaux M, Blum D, Foerster M, Franco P, Bochner A, Alexander M, Bachy A (1992) Sleep and cardiorespiratory characteristics of infant victims of sudden death: a prospective case-control study. Sleep 15(4):287–292

    CAS  PubMed  Google Scholar 

  • Kahn A, Groswasser J, Sottiaux M, Kelmanson I, Rebuffat E, Franco P, Dramaix M, Wayenberg JL (1994) Prenatal exposure to cigarettes in infants with obstructive sleep apneas. Pediatrics 93(5):778–783

    CAS  PubMed  Google Scholar 

  • Kallen K (1997) Maternal smoking and urinary organ malformations. Int J Epidemiol 26(3):571–574

    CAS  PubMed  Google Scholar 

  • King RG, Gude NM, Krishna BR, Chen S, Brennecke SP, Boura AL, Rook TJ (1991) Human placental acetylcholine. Reprod Fertil Dev 3(4):405–411

    CAS  PubMed  Google Scholar 

  • Kinney HC, Haynes RL (2019) The serotonin brainstem hypothesis for the sudden infant death syndrome. J Neuropathol Exp Neurol 78(9):765–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney HC, Thach BT (2009) The sudden infant death syndrome. N Engl J Med 361(8):795–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney HC, Randall LL, Sleeper LA, Willinger M, Belliveau RA, Zec N, Rava LA, Dominici L, Iyasu S, Randall B, Habbe D, Wilson H, Mandell F, McClain M, Welty TK (2003) Serotonergic brainstem abnormalities in Northern Plains Indians with the sudden infant death syndrome. J Neuropathol Exp Neurol 62(11):1178–1191

    CAS  PubMed  Google Scholar 

  • Kinney HC, Myers MM, Belliveau RA, Randall LL, Trachtenberg FL, Fingers ST, Youngman M, Habbe D, Fifer WP (2005) Subtle autonomic and respiratory dysfunction in sudden infant death syndrome associated with serotonergic brainstem abnormalities: a case report. J Neuropathol Exp Neurol 64(8):689–694

    PubMed  Google Scholar 

  • Kinney HC, Richerson GB, Dymecki SM, Darnall RA, Nattie EE (2009) The brainstem and serotonin in the sudden infant death syndrome. Annu Rev Pathol 4:517–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klesges LM, Murray DM, Brown JE, Cliver SP, Goldenberg RL (1998) Relations of cigarette smoking and dietary antioxidants with placental calcification. Am J Epidemiol 147(2):127–135

    CAS  PubMed  Google Scholar 

  • Kondracki AJ (2019) Prevalence and patterns of cigarette smoking before and during early and late pregnancy according to maternal characteristics: the first national data based on the 2003 birth certificate revision, United States, 2016. Reprod Health 16(1):142

    PubMed  PubMed Central  Google Scholar 

  • Koshakji RP, Sastry BV, Harbison RD (1974) Studies on the levels and nature of cholinesterase in human and mouse placenta. Res Commun Chem Pathol Pharmacol 9(1):181–184

    CAS  PubMed  Google Scholar 

  • Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L (2009) Sudden infant death syndrome and sudden intrauterine unexplained death: correlation between hypoplasia of raphe nuclei and serotonin transporter gene promoter polymorphism. Pediatr Res 66(1):22–27

    CAS  PubMed  Google Scholar 

  • Lips KS, Bruggmann D, Pfeil U, Vollerthun R, Grando SA, Kummer W (2005) Nicotinic acetylcholine receptors in rat and human placenta. Placenta 26(10):735–746

    CAS  PubMed  Google Scholar 

  • Luck W, Nau H, Hansen R, Steldinger R (1985) Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Dev Pharmacol Ther 8(6):384–395

    CAS  PubMed  Google Scholar 

  • Lv J, Mao C, Zhu L, Zhang H, Pengpeng H, Xu F, Liu Y, Zhang L, Xu Z (2008) The effect of prenatal nicotine on expression of nicotine receptor subunits in the fetal brain. Neurotoxicology 29(4):722–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machaalani R, Ghazavi E, Hinton T, Waters KA, Hennessy A (2014) Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta. Toxicol Appl Pharmacol 276(3):204–212

    CAS  PubMed  Google Scholar 

  • Machaalani R, Ghazavi E, Hinton T, Makris A, Hennessy A (2018) Immunohistochemical expression of the nicotinic acetylcholine receptor (nAChR) subunits in the human placenta, and effects of cigarette smoking and preeclampsia. Placenta 71:16–23

    CAS  PubMed  Google Scholar 

  • Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S, Hobbs CA, S. National Birth Defects Prevention (2008) Maternal smoking and congenital heart defects. Pediatrics 121(4):e810–e816

    PubMed  Google Scholar 

  • Mallol JV, Brandenburg DJ, Madrid RH, Sempertegui FG, Ramírez LA, Jorquera DA (2007) Prevalence of tobacco smoking during pregnancy in Chilean women of low socioeconomic status. Rev Chil Enf Respir 23:17–22

    Google Scholar 

  • McCubbin A, Fallin-Bennett A, Barnett J, Ashford K (2017) Perceptions and use of electronic cigarettes in pregnancy. Health Educ Res 32(1):22–32

    PubMed  PubMed Central  Google Scholar 

  • McEvoy CT, Spindel ER (2017) Pulmonary effects of maternal smoking on the fetus and child: effects on lung development, respiratory morbidities, and life long lung health. Paediatr Respir Rev 21:27–33

    PubMed  Google Scholar 

  • McKay BE, Placzek AN, Dani JA (2007) Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 74(8):1120–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • MinisteriodeSaluddeChile (2010) Encuesta Nacional de Salud 2009–2010. www.minsal.gob.cl/.../bcb03d7bc28b64dfe040010165012d23.pdf

  • Mitchell EA, Krous HF (2015) Sudden unexpected death in infancy: a historical perspective. J Paediatr Child Health 51(1):108–112

    PubMed  Google Scholar 

  • Mitchell EA, Thach BT, Thompson JM, Williams S (1999) Changing infants’ sleep position increases risk of sudden infant death syndrome. New Zealand Cot Death Study. Arch Pediatr Adolesc Med 153(11):1136–1141

    CAS  PubMed  Google Scholar 

  • Monteau R, Morin D, Hilaire G (1990) Acetylcholine and central chemosensitivity: in vitro study in the newborn rat. Respir Physiol 81(2):241–253

    CAS  PubMed  Google Scholar 

  • Nasirova N, Quina LA, Agosto-Marlin IM, Ramirez JM, Lambe EK, Turner EE (2020) Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J Comp Neurol 528(2):283–307

    CAS  PubMed  Google Scholar 

  • Obonai T, Yasuhara M, Nakamura T, Takashima S (1998) Catecholamine neurons alteration in the brainstem of sudden infant death syndrome victims. Pediatrics 101(2):285–288

    CAS  PubMed  Google Scholar 

  • Opanashuk LA, Pauly JR, Hauser KF (2001) Effect of nicotine on cerebellar granule neuron development. Eur J Neurosci 13(1):48–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paparini D, Gori S, Grasso E, Scordo W, Calo G, Perez Leiros C, Ramhorst R, Salamone G (2015) Acetylcholine contributes to control the physiological inflammatory response during the peri-implantation period. Acta Physiol (Oxf) 214(2):237–247

    CAS  PubMed  Google Scholar 

  • Paradiso B, Ferrero S, Thiene G, Lavezzi AM (2018) Variability of the medullary arcuate nucleus in humans. Brain Behav 8(11):e01133

    PubMed  PubMed Central  Google Scholar 

  • Pastrakuljic A, Schwartz R, Simone C, Derewlany LO, Knie B, Koren G (1998) Transplacental transfer and biotransformation studies of nicotine in the human placental cotyledon perfused in vitro. Life Sci 63(26):2333–2342

    CAS  PubMed  Google Scholar 

  • Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC (2006) Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 296(17):2124–2132

    CAS  PubMed  Google Scholar 

  • Pavia J, Munoz M, Jimenez E, Martos F, Gonzalez-Correa JA, De la Cruz JP, Garcia V, Sanchez de la Cuesta F (1997) Pharmacological characterization and distribution of muscarinic receptors in human placental syncytiotrophoblast brush-border and basal plasma membranes. Eur J Pharmacol 320(2–3):209–214

    CAS  PubMed  Google Scholar 

  • Placzek AN, Zhang TA, Dani JA (2009) Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol Sin 30(6):752–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rama Sastry BV, Hemontolor ME, Olenick M (1999) Prostaglandin E2 in human placenta: its vascular effects and activation of prostaglandin E2 formation by nicotine and cotinine. Pharmacology 58(2):70–86

    CAS  PubMed  Google Scholar 

  • Robinson DM, Peebles KC, Kwok H, Adams BM, Clarke LL, Woollard GA, Funk GD (2002) Prenatal nicotine exposure increases apnoea and reduces nicotinic potentiation of hypoglossal inspiratory output in mice. J Physiol 538(Pt 3):957–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy TS, Andrews JE, Seidler FJ, Slotkin TA (1998) Nicotine evokes cell death in embryonic rat brain during neurulation. J Pharmacol Exp Ther 287(3):1136–1144

    CAS  PubMed  Google Scholar 

  • Sastry BV (1997) Human placental cholinergic system. Biochem Pharmacol 53(11):1577–1586

    CAS  PubMed  Google Scholar 

  • Schechtman VL, Harper RM, Wilson AJ, Southall DP (1991) Sleep apnea in infants who succumb to the sudden infant death syndrome. Pediatrics 87(6):841–846

    CAS  PubMed  Google Scholar 

  • Schechtman VL, Harper RM, Wilson AJ, Southall DP (1992) Sleep state organization in normal infants and victims of the sudden infant death syndrome. Pediatrics 89(5 Pt 1):865–870

    CAS  PubMed  Google Scholar 

  • Scott IC, Anson-Cartwright L, Riley P, Reda D, Cross JC (2000) The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol Cell Biol 20(2):530–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekhon HS, Keller JA, Benowitz NL, Spindel ER (2001) Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys. Am J Respir Crit Care Med 164(6):989–994

    CAS  PubMed  Google Scholar 

  • Shacka JJ, Robinson SE (1998) Exposure to prenatal nicotine transiently increases neuronal nicotinic receptor subunit alpha7, alpha4 and beta2 messenger RNAs in the postnatal rat brain. Neuroscience 84(4):1151–1161

    CAS  PubMed  Google Scholar 

  • Shannon DC, Kelly DH, O’Connell K (1977) Abnormal regulation of ventilation in infants at risk for sudden-infant-death syndrome. N Engl J Med 297(14):747–750

    CAS  PubMed  Google Scholar 

  • Simakajornboon N, Vlasic V, Li H, Sawnani H (2004) Effect of prenatal nicotine exposure on biphasic hypoxic ventilatory response and protein kinase C expression in caudal brain stem of developing rats. J Appl Physiol 96(6):2213–2219

    CAS  PubMed  Google Scholar 

  • Slotkin TA, Epps TA, Stenger ML, Sawyer KJ, Seidler FJ (1999) Cholinergic receptors in heart and brainstem of rats exposed to nicotine during development: implications for hypoxia tolerance and perinatal mortality. Brain Res Dev Brain Res 113(1–2):1–12

    CAS  PubMed  Google Scholar 

  • Socol ML, Manning FA, Murata Y, Druzin ML (1982) Maternal smoking causes fetal hypoxia: experimental evidence. Am J Obstet Gynecol 142(2):214–218

    CAS  PubMed  Google Scholar 

  • Sovik S, Lossius K, Eriksen M, Grogaard J, Walloe L (1999) Development of oxygen sensitivity in infants of smoking and non-smoking mothers. Early Hum Dev 56(2–3):217–232

    CAS  PubMed  Google Scholar 

  • St. John WM, Leiter JC (1999) Maternal nicotine depresses eupneic ventilation of neonatal rats. Neurosci Lett 267(3):206–208

    CAS  PubMed  Google Scholar 

  • Strickland S, Richards WG (1992) Invasion of the trophoblasts. Cell 71(3):355–357

    CAS  PubMed  Google Scholar 

  • Stroud LR, Paster RL, Papandonatos GD, Niaura R, Salisbury AL, Battle C, Lagasse LL, Lester B (2009) Maternal smoking during pregnancy and newborn neurobehavior: effects at 10 to 27 days. J Pediatr 154(1):10–16

    PubMed  Google Scholar 

  • Taal HR, Geelhoed JJ, Steegers EA, Hofman A, Moll HA, Lequin M, van der Heijden AJ, Jaddoe VW (2011) Maternal smoking during pregnancy and kidney volume in the offspring: the Generation R Study. Pediatr Nephrol 26(8):1275–1283

    PubMed  PubMed Central  Google Scholar 

  • Thaler I, Goodman JD, Dawes GS (1980) Effects of maternal cigarette smoking on fetal breathing and fetal movements. Am J Obstet Gynecol 138(3):282–287

    CAS  PubMed  Google Scholar 

  • Ueda Y, Stick SM, Hall G, Sly PD (1999) Control of breathing in infants born to smoking mothers. J Pediatr 135(2 Pt 1):226–232

    CAS  PubMed  Google Scholar 

  • Vyhlidal CA, Riffel AK, Haley KJ, Sharma S, Dai H, Tantisira KG, Weiss ST, Leeder JS (2013) Cotinine in human placenta predicts induction of gene expression in fetal tissues. Drug Metab Dispos 41(2):305–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sun X (2005) Desensitized nicotinic receptors in brain. Brain Res Brain Res Rev 48(3):420–437

    CAS  PubMed  Google Scholar 

  • Wang QQ, Zhao X, Pu XP (2011) Proteome analysis of the left ventricle in the vitamin D(3) and nicotine-induced rat vascular calcification model. J Proteome 74(4):480–489

    CAS  Google Scholar 

  • Wang L, Li X, Zhao Y, Fang C, Lian Y, Gou W, Han T, Zhu X (2015) Insights into the mechanism of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis. Acta Biochim Biophys Sin Shanghai 47(9):663–672

    CAS  PubMed  Google Scholar 

  • Welsch F, Wenger WC, Stedman DB (1981) Acetylcholine in human term placenta: tissue levels in intact fragments after inhibition in vitro of choline acetyltransferase and relationship to [14C]alpha-aminoisobutyric acid uptake. Placenta Suppl 3:339–351

    CAS  PubMed  Google Scholar 

  • Wessler I, Michel-Schmidt R, Brochhausen C, Kirkpatrick CJ (2012) Subcellular distribution of choline acetyltransferase by immunogold electron microscopy in non-neuronal cells: placenta, airways and murine embryonic stem cells. Life Sci 91(21–22):977–980

    CAS  PubMed  Google Scholar 

  • Whittington JR, Simmons PM, Phillips AM, Gammill SK, Cen R, Magann EF, Cardenas VM (2018) The use of electronic cigarettes in pregnancy: a review of the literature. Obstet Gynecol Surv 73(9):544–549

    PubMed  Google Scholar 

  • Wickstrom R (2007) Effects of nicotine during pregnancy: human and experimental evidence. Curr Neuropharmacol 5(3):213–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong MK, Nicholson CJ, Holloway AC, Hardy DB (2015) Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS One 10(3):e0122295

    PubMed  PubMed Central  Google Scholar 

  • Wong MK, Holloway AC, Hardy DB (2016) Nicotine directly induces endoplasmic reticulum stress response in rat placental trophoblast giant cells. Toxicol Sci 151(1):23–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wonnacott S, Barik J, Dickinson J, Jones IW (2006) Nicotinic receptors modulate transmitter cross talk in the CNS: nicotinic modulation of transmitters. J Mol Neurosci 30(1–2):137–140

    CAS  PubMed  Google Scholar 

  • Zec N, Filiano JJ, Kinney HC (1997) Anatomic relationships of the human arcuate nucleus of the medulla: a DiI-labeling study. J Neuropathol Exp Neurol 56(5):509–522

    CAS  PubMed  Google Scholar 

  • Zheng W, Suzuki K, Tanaka T, Kohama M, Yamagata Z, G. Okinawa Child Health Study (2016) Association between maternal smoking during pregnancy and low birthweight: effects by maternal age. PLoS One 11(1):e0146241

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

FONDECYT de iniciación 11230857 to SBC and FONDECYT 1211359 to JE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastián Beltrán-Castillo or Jaime Eugenín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beltrán-Castillo, S., Bravo, K., Eugenín, J. (2023). Impact of Prenatal Nicotine Exposure on Placental Function and Respiratory Neural Network Development. In: Gonzalez-Ortiz, M. (eds) Advances in Maternal-Fetal Biomedicine. Advances in Experimental Medicine and Biology, vol 1428. Springer, Cham. https://doi.org/10.1007/978-3-031-32554-0_10

Download citation

Publish with us

Policies and ethics