Skip to main content

Upper Airway Thermoregulation and Airway Resistance

  • Chapter
  • First Online:
Upper Airway Disorders and Noninvasive Mechanical Ventilation

Abstract

Thermoregulation is the ability of an organism to maintain a stable internal body temperature. Upper airway is one of the main components involved in the process of thermoregulation, and its functions contribute to maintain organism’s homeostasis. Various functions such as evaporative heat loss, bronchospasm, and humidification of inhaled air participate in the process of thermoregulation. Additionally, airway resistance is an important parameter that has a special role in the process of breathing and, therefore, in thermoregulation. Changes in the diameter of the airway can lead to difficulties in the ventilation of the patient by simultaneously altering the mechanisms of thermoregulation. Moreover, in clinical practice, this is particularly important, and the physician must maintain perception, in order to help the patient keep the homeostasis intact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Respiratory system & thermoregulation—Poultry Hub Australia. [cited 2022 Mar 31]. https://www.poultryhub.org/anatomy-and-physiology/body-systems/respiratory-system-thermoregulation.

  2. Physiology, Temperature Regulation—StatPearls—NCBI Bookshelf. [cited 2022 Mar 31]. https://www.ncbi.nlm.nih.gov/books/NBK507838/.

  3. Charkoudian N. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc. 2003;78(5):603–12. https://www.sciencedirect.com/science/article/pii/S0025619611619307.

    Article  PubMed  Google Scholar 

  4. Cheshire WP. Thermoregulatory disorders and illness related to heat and cold stress. Auton Neurosci. 2016;196:91–104. https://www.sciencedirect.com/science/article/pii/S1566070216300017.

    Article  PubMed  Google Scholar 

  5. Body Temperature Homeostasis: Cold Pressor Test – A Mixed Course-Based Research Approach to Human Physiology. [cited 2022 Apr 2]. https://iastate.pressbooks.pub/curehumanphysiology/chapter/body-temperature-homeostasis/.

  6. Tansey EA, Johnson CD. Recent advances in thermoregulation. Adv Physiol Educ. 2015. [cited 2022 Apr 3];39(1):139–48. https://doi.org/10.1152/advan.00126.2014.

    Article  PubMed  Google Scholar 

  7. Boulant JA. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2000;31(Suppl 5):S157–61.

    Article  Google Scholar 

  8. Zhao ZD, Yang WZ, Gao C, Fu X, Zhang W, Zhou Q, et al. A hypothalamic circuit that controls body temperature. Proc Natl Acad Sci U S A. 2017;114(8):2042–7. [cited 2022 May 29]; /pmc/articles/PMC5338448/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shelly MP. Editorial: the upper airway - the forgotten organ. Crit Care. 2001;5(1):1. https://doi.org/10.1186/cc971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shelly MP. Inspired gas conditioning. Respir Care. 1992;37(9):1070–80.

    CAS  PubMed  Google Scholar 

  11. Bronchospasm: Symptoms, Treatment & What it Is. [cited 2022 Aug 3]. https://my.clevelandclinic.org/health/diseases/22620-bronchospasm.

  12. Stewart EJ, Cinnamond MJ, Siddiqui R, Nicholls DP, Stanford CF. Effect of a heat and moisture retaining mask on exercise induced asthma. BMJ Br Med J. 1992;304(6825):479.

    Article  CAS  Google Scholar 

  13. Shelly MP. Conditioning of inspired gases. Lung Biol Heal Dis. 1998;118:575–99.

    Google Scholar 

  14. McFadden ER, Pichurko BM, Bowman HF, Ingenito E, Burns S, Dowling N, et al. Thermal mapping of the airways in humans. J Appl Physiol. 1985;58(2):564–70. https://doi.org/10.1152/jappl.1985.58.2.564.

    Article  PubMed  Google Scholar 

  15. Schmidt-Nielsen K, Schroter RC, Shkolnik A. Desaturation of exhaled air in camels. Proc R Soc London Ser B Biol Sci. 1981;211(1184):305–19.

    CAS  Google Scholar 

  16. Hales JRS, Webster MED. Respiratory function during thermal tachypnoea in sheep. J Physiol. 1967;190(2):241–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hales JRS, Brown GD. Net energetic and thermoregulatory efficiency during panting in the sheep. Comp Biochem Physiol Part A Physiol. 1974;49(3):413–22.

    Article  CAS  Google Scholar 

  18. Hales JRS, Findlay JD. The oxygen cost of thermally-induced and CO2-induced hyperventilation in the ox. Respir Physiol. 1968;4(3):353–62.

    Article  CAS  PubMed  Google Scholar 

  19. Hales JRS. Effects of heat stress on blood flow in respiratory and non-respiratory muscles in the sheep. Pflügers Arch. 1973;345(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  20. Crawford EC Jr. Mechanical aspects of panting in dogs. J Appl Physiol. 1962;17(2):249–51.

    Article  PubMed  Google Scholar 

  21. Robertshaw D, Taylor CR. A comparison of sweat gland activity in eight species of East African bovids. J Physiol. 1969;203(1):135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor CR. Metabolism, respiratory changes, and water balance of an antelope, the eland. Am J Physiol Content. 1969;217(1):317–20.

    Article  CAS  Google Scholar 

  23. Cabanac M, White MD. Core temperature thresholds for hyperpnea during passive hyperthermia in humans. Eur J Appl Physiol Occup Physiol. 1995;71(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  24. White MD, Cabanac M. Exercise hyperpnea and hyperthermia in humans. J Appl Physiol. 1996;81(3):1249–54.

    Article  CAS  PubMed  Google Scholar 

  25. Robertshaw D. Mechanisms for the control of respiratory evaporative heat loss in panting animals. J Appl Physiol. 2006;101(2):664–8. https://doi.org/10.1152/japplphysiol.01380.2005.

    Article  PubMed  Google Scholar 

  26. Pfitzner J. Poiseuille and his law. Anaesthesia. 1976;31(2):273–5.

    Article  CAS  PubMed  Google Scholar 

  27. Story DA. Alveolar oxygen partial pressure, alveolar carbon dioxide partial pressure, and the alveolar gas equation. Anesthesiology. 1996;84:1011.

    Article  CAS  PubMed  Google Scholar 

  28. Sériès F, Marc I. Influence of lung volume dependence of upper airway resistance during continuous negative airway pressure. J Appl Physiol. 1994 Aug;77(2):840–4.

    Article  PubMed  Google Scholar 

  29. Physiology, Airflow Resistance - StatPearls - NCBI Bookshelf. [cited 2022 Aug 16]. https://www.ncbi.nlm.nih.gov/books/NBK554401/#_NBK554401_pubdet.

  30. D’Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the world allergy organization. World Allergy Organ J. 2015;8(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Davis MS, Freed AN. Repeated hyperventilation causes peripheral airways inflammation, hyperreactivity, and impaired bronchodilation in dogs. Am J Respir Crit Care Med. 2001;164(5):785–9.

    Article  CAS  PubMed  Google Scholar 

  32. Larsson K, Tornling G, Gavhed D, Müller-Suur C, Palmberg L. Inhalation of cold air increases the number of inflammatory cells in the lungs in healthy subjects. Eur Respir J. 1998;12(4):825–30.

    Article  CAS  PubMed  Google Scholar 

  33. Koskela HO, Koskela AK, Tukiaineu HO. Bronchoconstriction due to cold weather in COPD. The roles of direct airway effects and cutaneous reflex mechanisms. Chest. 1996;110(3):632–6.

    Article  CAS  PubMed  Google Scholar 

  34. D’Amato M, Molino A, Calabrese G, Cecchi L, Annesi-Maesano I, D’Amato G. The impact of cold on the respiratory tract and its consequences to respiratory health. Clin Transl Allergy. 2018;8(1):20. https://doi.org/10.1186/s13601-018-0208-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

None declared.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanteres, T., Tzitzili, E., Barbetakis, N. (2023). Upper Airway Thermoregulation and Airway Resistance. In: Esquinas, A.M., De Vito, A., Barbetakis, N. (eds) Upper Airway Disorders and Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-031-32487-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32487-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32486-4

  • Online ISBN: 978-3-031-32487-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics