Skip to main content

Abstract

The pharynx is divided into three sections: the nasopharynx, oropharynx, and laryngopharynx.

The nasopharynx is a part of the respiratory system as the posterior portion of the nasal cavity. The nasopharynx communicates with the oropharynx through the soft palate and posterior wall of the pharynx. The oropharynx extends from the soft palate to the superior border of the epiglottis, and it communicates anteriorly with the oral cavity by the soft palate and tongue (O’rahilly et al., Basic Human Anatomy. A Regional Study of Human Structure, Chapter 53. Saunders, Philadelphia, 1983).

The reduction in the pharyngeal airway space causes difficulties in both nasal and mouth breathing, thus affecting the morphology of the entire face, including the mandible (Dunn et al., Angle Orthod 43:129–35, 1973). As a result, both sleep quality and facial development during childhood might be affected. Moreover, acute infections of the sinuses might occur. Repeated anatomic partial collapse or obstruction of this region causes cessation of airflow along with persistent respiratory effort, defined as obstructive sleep apnea (Prisant et al., J Clin Hypertens (Greenwich) 8:746–50, 2006).

Several studies have investigated the relationship between breathing patterns and craniofacial morphology (Katyal et al., Am J Orthod Dentofacial Orthop. 143:20–30.e3, 2013). However, these connections are not still completely clarified. The possible correlation between airway obstructions and the frequency of malocclusions remains under investigation (Leech, Dent Pract 9:57–68, 1958).

Maintenance of upper airway patency during anesthesia is of vital importance, as upper airway muscle activity becomes significantly compromised with the loss of consciousness. In such cases, mechanical upper airway properties predominate in control of overall collapsibility of the airway. Hence, improving the mechanical characteristics of the upper airway during anesthesia is crucial in the maintenance of airway patency. Positional changes of the mandible, such as avoiding opening of the mouth (jaw closure), are known to play an important role in the maintenance of upper airway patency during anesthesia. Establishment of jaw closure with approximately 6 cm head elevation, achieved by lying on a table with a 6-cm-high pillow, helps maintain upper airway patency in normal healthy subjects (Ayuse et al., J Dent Res 83:718:22; Kobayashi et al., Anesthesiology 115:273–81, 2011).

Performing bedside testing for identifying a potential difficult airway before general anesthesia is part of routine clinical practice. Most commonly used tests include:

  • The Mallampati test (usually in its modified form, including a Class 4)

  • Wilson risk score

  • Thyromental distance

  • Sternomental distance

  • Mouth opening

  • The upper lip bite test

These tests are regarded as screening tests that are very sensitive in identifying all potential cases of difficult airway but have a lower specificity to identify those without a difficult airway.

Obstructive processes of morphologic, physiologic, or pathologic nature of the visceral skull, such as hypertrophy of adenoids and tonsils, chronic and allergic rhinitis, irritant environmental factors, infections, congenital nasal deformities, nasal traumas, polyps, and tumors, are predisposing factors to a blocked upper airway. Techniques that allow the precise diagnosis of changes in the upper airway considering their morphology and volume are fundamental to ensure normal development of the craniofacial complex in growing subjects and the choice of an adequate treatment plan (Roth et al., Anaesthesia 161:e390–e399).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ning R, Guo J, Martin D. Effect of premolar extraction on upper airway volume and hyoid position in hyperdivergent adults with different mandibular length. Am J Orthod Dentofac Orthop. 2022;161(4):e390–9.

    Article  Google Scholar 

  2. Mhyre JM, Healy D. The unanticipated difficult intubation in obstetrics. Anesth Analg. 2011;112:648–52.

    Article  CAS  PubMed  Google Scholar 

  3. Seo S-H, Lee J-G, Yu S-B, Kim D-S, Ryu S-J, Kim K-H. Predictors of difficult intubation defined by the intubation difficulty scale (IDS): predictive value of 7 airway assessment factors. Korean J Anesthesiol. 2012;63:491–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fritscherova S, Adamus M, Dostalova K, et al. Can difficult intubation be easily and rapidly predicted? Biomed Pap Med Fac Palacky Univ Olomouc. 2011;155:165–71.

    Article  Google Scholar 

  5. Patel B, Khandekar R, Diwan R, Shah A. Validation of modified Mallampati test with addition of thyromental distance and sternomental distance to predict difficult endotracheal intubation in adults. Indian J Anaesth. 2014;58:171–5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhong Z, Tang Z, Gao X, Zeng XL. A comparison study of upper airway among different skeletal craniofacial patterns in non-snoring Chinese children. Angle Orthod. 2010;80:267–74.

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Freitas MR, Alcazar NM, Janson G, de Freitas KM, Henriques JF. Upper and lower pharyngeal airways in subjects with class I and class II malocclusions and different growth patterns. Am J Orthod Dentofac Orthop. 2006;130:742–5.

    Article  Google Scholar 

  8. Benner A, Sharma P, Sharma S. Anatomy, head and neck, cervical, respiratory, larynx, and Cricoarytenoid. [updated 2021 Aug 11]. In: StatPearls. Treasure Island, (FL): StatPearls Publishing; 2022.

    Google Scholar 

  9. Caplan RA, Posner KL, Ward RJ, Cheney FW. Adverse respiratory events in anesthesia: a closed claims analysis. Anesthesiology. 1990;72(5):828–33.

    Article  CAS  PubMed  Google Scholar 

  10. Cook TM, Woodall N, Frerk C, Fourth National Audit Project. Major complications of airway management in the UK: results of the fourth National Audit Project of the Royal College of Anaesthetists and the difficult airway society, Part 1: Anaesthesia. Br J Anaesth. 2011;106(5):617–31.

    Article  CAS  PubMed  Google Scholar 

  11. Cook TM, Woodall N, Harper J, Benger J, Fourth National Audit Project. Major complications of airway management in the UK: results of the fourth National Audit Project of the Royal College of Anaesthetists and the difficult airway society, Part 2: Intensive care and emergency departments. Br J Anaesth. 2011;106(5):632–42.

    Article  CAS  PubMed  Google Scholar 

  12. Cormack RS, Lehane J. Difficult tracheal intubation in obstetrics. Anaesthesia. 1984;39(11):1105–11.

    Article  CAS  PubMed  Google Scholar 

  13. Adnet F, Borron SW, Racine SX, et al. The intubation difficulty scale (IDS): proposal and evaluation of a new score characterizing the complexity of endotracheal intubation. Anesthesiology. 1997;87(6):1290–7.

    Article  CAS  PubMed  Google Scholar 

  14. Frerk C, Mitchell VS, McNarry AF, et al. Difficult airway society 2015 guidelines for management of unanticipated difficult intubation in adults. Br J Anaesth. 2015;115:827–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peterson GN, Domino KB, Caplan RA, et al. Management of the difficult airway: a closed claims analysis. Anesthesiology. 2005;103:33–9.

    Article  PubMed  Google Scholar 

  16. Apfelbaum JL, Hagberg CA, Caplan RA, et al. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology. 2013;118:251–70.

    Article  PubMed  Google Scholar 

  17. Kheterpal S, Martin L, Shanks AM, Tremper KK. Prediction and outcomes of impossible mask ventilation: a review of 50,000 anesthetics. Anesthesiology. 2009;110:891–7.

    Article  PubMed  Google Scholar 

  18. Norskov AK, Wetterslev J, Rosenstock CV, et al. Prediction of difficult mask ventilation using a systematic assessment of risk factors vs. existing practice – a cluster randomised clinical trial in 94,006 patients. Anaesthesia. 2017;72:296–308.

    Article  CAS  PubMed  Google Scholar 

  19. O’Loughlin EJ, Swann AD, English JD, Ramadas R. Accuracy, intra- and inter-rater reliability of three scoring systems for the glottic view at videolaryngoscopy. Anaesthesia. 2017;72:835–9.

    Article  PubMed  Google Scholar 

  20. Huitink JM, Lie PP, Heideman I, et al. A prospective, cohort evaluation of major and minor airway management complications during routine anaesthetic care at an academic medical Centre. Anaesthesia. 2017;72:42–8.

    Article  CAS  PubMed  Google Scholar 

  21. Roth N, Pace L, Lee A, Hovhannisyan K, Warenits AM, Arrich J, et al. Bedside examination tests for difficult airway detection. Anaesthesia. 2019;74:915–28.

    Article  CAS  PubMed  Google Scholar 

  22. Apfelbaum JL, Hagberg CA, Caplan RA, et al. American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on management of the difficult airway. Anesthesiology. 2013;118(2):251–70.

    PubMed  Google Scholar 

  23. Myers KA, Mrkobrada M, Simel DL. Does this patient have obstructive sleep apnea?: the rational clinical examination systematic review. JAMA. 2013;310(7):731–41.

    Article  CAS  PubMed  Google Scholar 

  24. Roth D, Pace NL, Lee A, et al. Airway physical examination tests for detection of difficult airway management in apparently normal adult patients. Cochrane Database Syst Rev. 2018;5(5):CD008874.

    PubMed  Google Scholar 

  25. Khan ZH, Arbabi S, Yekaninejad MS, Khan RH. Application of the upper lip catch test for airway evaluation in edentulous patients: an observational study. Saudi J Anaesth. 2014;8(1):73–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huh J, Shin HY, Kim SH, Yoon TK, Kim DK. Diagnostic predictor of difficult laryngoscopy: the hyomental distance ratio. Anesth Analg. 2009;108(2):544–8.

    Article  PubMed  Google Scholar 

  27. Savva D. Prediction of difficult tracheal intubation. Br J Anaesth. 1994;73(2):149–53.

    Article  CAS  PubMed  Google Scholar 

  28. Samsoon GL, Young JR. Difficult tracheal intubation: a retrospective study. Anaesthesia. 1987;42(5):487–90.

    Article  CAS  PubMed  Google Scholar 

  29. Reed MJ, Dunn MJ, McKeown DW. Can an airway assessment score predict difficulty at intubation in the emergency department? Emerg Med J. 2005;22:99–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tarkar JS, Parashar S, Gupta G, Bhardwaj P, Maurya RK, Singh A, et al. An evaluation of upper and lower pharyngeal airway width, tongue posture and hyoid bone position in subjects with different growth patterns. J Clin Diagn Res. 2016;10:ZC79–83.

    PubMed  PubMed Central  Google Scholar 

  31. Sutherland K, Vanderveken OM, Tsuda H, Marklund M, Gagnadoux F, Kushida CA, Cistulli PA. Oral appliance treatment for obstructive sleep apnea: an update. J Clin Sleep Med. 2014;10(2):215–27.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tsuiki S, Ono T, Kuroda T. Mandibular advancement modulates respiratory-related genioglossus electromyographic activity. Sleep Breath. 2000;4:53–7.

    Article  PubMed  Google Scholar 

  33. Gao X, Otsuka R, Ono T, Honda E, Sasaki T, Kuroda T. Effect of titrated mandibular advancement and jaw opening on the upper airway in nonapneic men: a magnetic resonance imaging and cephalometric study. Am J Orthod Dentofac Orthop. 2004 Feb;125(2):191–9.

    Article  Google Scholar 

  34. Vroegop AV, Vanderveken OM, Van de Heyning PH, Braem MJ. Effects of vertical opening on pharyngeal dimensions in patients with obstructive sleep apnoea. Sleep Med. 2012;13:314–6.

    Article  PubMed  Google Scholar 

  35. Grippaudo C, Paolantonio EG, Antonini G, Saulle R, La Torre G, Deli R. Association between oral habits, mouth breathing and malocclusion. Acta Otorhinolaryngol Ital. 2016;36(5):386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paolantonio EG, Ludovici N, Saccomanno S, La Torre G, Grippaudo C. Association between oral habits, mouth breathing and malocclusion in Italian preschoolers. Eur J Paediatr Dent. 2019;20(3):204–8.

    CAS  PubMed  Google Scholar 

  37. Rubin RM. The orthodontist’s responsibility in preventing facial deformity. In: McNamara Jr JA, editor. Naso-respiratory function and craniofacial growth. Monograph 9. Craniofacial growth series. Ann Arbor: Center for Human Growth and Development; University of Michigan; 1979.

    Google Scholar 

  38. Shapiro PA. Effects of nasal obstruction on facial development. J Allergy Clin Immunol. 1988;81:967–71.

    Article  CAS  PubMed  Google Scholar 

  39. Montgomery WM, Vig PS, Staab EV, Matteson SR. Computed tomography: a three-dimensional study of the nasal airway. Am J Orthod. 1979;76:363–75.

    Article  CAS  PubMed  Google Scholar 

  40. Aboudara C, Nielsen I, Huang JC, Maki K, Miller AJ, Hatcher D. Comparison of airway space with conventional lateral head films and 3-dimensional reconstruction from cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;135:468–79.

    Article  Google Scholar 

  41. Schendel SA, Jacobson R, Khalessi S. Airway growth and development: a computerized 3-dimensional analysis. J Oral Maxillofac Surg. 2012;70:2174–83.

    Article  PubMed  Google Scholar 

  42. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165:1217–39.

    Article  PubMed  Google Scholar 

  43. Vanderveken OM, Devolder A, Marklund M, et al. Comparison of a custom-made and a thermoplastic oral appliance for the treatment of mild sleep apnea. Am J Respir Crit Care Med. 2008;178:197–202.

    Article  PubMed  Google Scholar 

  44. Kato J, Isono S, Tanaka A, et al. Dose-dependent effects of mandibular advancement on pharyngeal mechanics and nocturnal oxygenation in patients with sleep-disordered breathing. Chest. 2000;117:1065–72.

    Article  CAS  PubMed  Google Scholar 

  45. Dryden IL, Mardia KV. Statistical shape analysis: with applications in R. Chichester, United Kingdom: John Wiley & Sons; 2016.

    Book  Google Scholar 

  46. Chun YS, Jeong SG, Row J, Yang SJ. A new appliance for orthopedic correction of class III malocclusion. J Clin Orthod. 1999;33:705–11.

    CAS  PubMed  Google Scholar 

  47. Atalay Z, Tortop T. Dentofacial effects of a modified tandem traction bow appliance. Eur J Orthod. 2010;32:655–61.

    Article  PubMed  Google Scholar 

  48. Iwasaki T, Hayasaki H, Takemoto Y, Kanomi R, Yamasaki Y. Oropharyngeal airway in children with class III malocclusion evaluated by cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;36(3):318.e1–9. discussion 318–9

    Article  Google Scholar 

  49. Guest SS, McNamara JA Jr, Baccetti T, Franchi L. Improving class II malocclusion as a side-effect of rapid maxillary expansion: a prospective clinical study. Am J Orthod Dentofac Orthop. 2010;138(5):582–91.

    Article  Google Scholar 

  50. Baratieri C, Alves M Jr, Sant'anna EF, Nojima Mda C, Nojima LI. 3D mandibular positioning after rapid maxillary expansion in class II malocclusion. Braz Dent J. 2011;22(5):428–34.

    Article  PubMed  Google Scholar 

  51. El H, Palomo JM. An airway study of different maxillary and mandibular sagittal positions. Eur J Orthod. 2013;35(2):262–70.

    Article  PubMed  Google Scholar 

  52. Yamashina A, Tanimoto K, Sutthiprapaporn P, Hayakawa Y. The reliability of computed tomography (CT) values and dimensional measurements of the oropharyngeal region using cone beam CT: comparison with multidetector CT. Dentomaxillofac Radiol. 2008;37:245–51.

    Article  CAS  PubMed  Google Scholar 

  53. Palomo JM, Rao PS, Hans MG. Influence of CBCT exposure conditions on radiation dose. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:773–82.

    Article  PubMed  Google Scholar 

  54. Ingman T, Nieminen T, Hurmerinta K. Cephalometric comparison of pharyngeal changes in subjects with upper airway resistance syndrome or obstructive sleep apnoea in upright and supine positions. Eur J Orthod. 2004;26:321–6.

    Article  PubMed  Google Scholar 

  55. Kim YJ, Hong JS, Hwang YI, Park YH. Three-dimensional analysis of pharyngeal airway in preadolescent children with different anteroposterior skeletal patterns. Am J Orthod Dentofac Orthop. 2010;137:306.e301–11. discussion 306–307

    Article  Google Scholar 

  56. Moore A. Observations on mouth breathing. Bull N Z Soc Periodontol. 1972;33:9–11.

    Google Scholar 

  57. Ceylan I, Oktay H. A study on the pharyngeal size in different skeletal patterns. Am J Orthod Dentofac Orthop. 1995;108:69–75.

    Article  CAS  Google Scholar 

  58. Kirjavainen M, Kirjavainen T. Upper airway dimensions in class II malocclusion. Effects of headgear treatment. Angle Orthod. 2007;77:1046–53.

    Article  PubMed  Google Scholar 

  59. Martin O, Muelas L, Vinas MJ. Comparative study of nasopharyngeal soft-tissue characteristics in patients with class III malocclusion. Am J Orthod Dentofac Orthop. 2011;139:242–51.

    Article  Google Scholar 

  60. Joseph AA, Elbaum J, Cisneros GJ, Eisig SB. A cephalometric comparative study of the soft tissue airway dimensions in persons with hyperdivergent and normodivergent facial patterns. J Oral Maxillofac Surg. 1998;56:135–9. discussion 139–140

    Article  CAS  PubMed  Google Scholar 

  61. Grauer D, Cevidanes LS, Styner MA, Ackerman JL, Profit WR. Pharyngeal airway volume and shape from cone-beam computed tomography: relationship to facial morphology. Am J Orthod Dentofac Orthop. 2009;136:805–14.

    Article  Google Scholar 

  62. Trenouth MJ, Timms DJ. Relationship of the functional oropharynx to craniofacial morphology. Angle Orthod. 1999;69:419–23.

    CAS  PubMed  Google Scholar 

  63. Tso HH, Lee JS, Huang JC, Maki K, Hatcher D, Miller AJ. Evaluation of the human airway using cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:768–76.

    Article  PubMed  Google Scholar 

  64. Vig PS, Cohen AM. The size of the tongue and the intermaxillary space. Angle Orthod. 1974;44:25–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The figures of the present study are a copyright of the author himself.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

None declared.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogakos, A.S., Rallis, T., Barbetakis, N. (2023). Upper Airways the Maxilar-Jaw Effect. In: Esquinas, A.M., De Vito, A., Barbetakis, N. (eds) Upper Airway Disorders and Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-031-32487-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32487-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32486-4

  • Online ISBN: 978-3-031-32487-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics