Skip to main content

Noninvasive Ventilation Success and Failure Risk Factors: The Role of Upper Airways

  • Chapter
  • First Online:
Upper Airway Disorders and Noninvasive Mechanical Ventilation

Abstract

Noninvasive ventilation (NIV) refers to the provision of ventilatory support through the patient’s upper airways using a mask or similar device.

Over the past few years, several factors have been identified that influence the outcome of NIV, but the mechanisms which determine NIV failure or success are incompletely understood.

The upper airways may play a role in the efficiency of delivered ventilation, but, currently, the relationship between NIV outcome and upper airways is not completely understood.

To address these issues, we discuss the factors mainly related to NIV failure and its success; moreover, we analyze the anatomic and physiological basis of interaction between upper airways and NIV and the potential compromise of the efficacy of NIV induced by alterations in the upper airway patency or its spasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

ARF:

Acute respiratory failure

cmH2O:

Centimeters of water

COPD:

Chronic obstructive pulmonary disease

EPAP:

Expiratory positive airway pressure

FiO2:

Fraction of inspired oxygen

HMEs:

Heat-moisture exchangers

ICU:

Intensive care unit

IMV:

Invasive mechanical ventilation

IPAP:

Inspiratory positive airway pressures

NIV:

Noninvasive ventilation

PSRs:

Pulmonary stretch receptors

PVA:

Patient-ventilator asynchrony

RARs:

Rapidly adapting receptors

UA:

Upper airways

References

  1. Hess DR. Noninvasive ventilation for acute respiratory failure. Respir Care. 2013 Jun;58(6):950–7S.

    Article  PubMed  Google Scholar 

  2. Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009;374(9685):250–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, Members NP, Of The Steering Committee, Antonelli M, Brozek J, Conti G, Ferrer M, Guntupalli K, Jaber S, Keenan S, Mancebo J, Mehta S, Raoof S. Members of the task force. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426.

    Article  PubMed  Google Scholar 

  4. Oppersma E, Doorduin J, van der Heijden EH, van der Hoeven JG, Heunks LM. Noninvasive ventilation and the upper airway: should we pay more attention? Crit Care. 2013;17(6):245.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ozyilmaz E, Ugurlu AO, Nava S. Timing of noninvasive ventilation failure: causes, risk factors, and potential remedies. BMC Pulm Med. 2014;14:19.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scala R, Pisani L. Noninvasive ventilation in acute respiratory failure: which recipe for success? Eur Respir Rev. 2018;27(149):180029.

    Article  PubMed  PubMed Central  Google Scholar 

  7. British Thoracic Society Standards of Care Committee. Non-invasive ventilation in acute respiratory failure. Thorax. 2002;57(3):192–211.

    Article  Google Scholar 

  8. Scala R, Naldi M, Maccari U. Early fiberoptic bronchoscopy during non-invasive ventilation in patients with decompensated chronic obstructive pulmonary disease due to community-acquired-pneumonia. Crit Care. 2010;14(2):R80.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Cui Z, Liu S, Gao X, Gao P, Shi Y, Guo S, Li P. Early use of noninvasive techniques for clearing respiratory secretions during noninvasive positive-pressure ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease and hypercapnic encephalopathy: a prospective cohort study. Medicine (Baltimore). 2017 Mar;96(12):e6371.

    Article  CAS  PubMed  Google Scholar 

  10. Scala R. Challenges on non-invasive ventilation to treat acute respiratory failure in the elderly. BMC Pulm Med. 2016;16(1):150.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carlucci A, Richard JC, Wysocki M, Lepage E, Brochard L, SRLF Collaborative Group on Mechanical Ventilation. Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med. 2001;163(4):874–80.

    Article  CAS  PubMed  Google Scholar 

  12. Ergan B, Nasiłowski J, Winck JC. How should we monitor patients with acute respiratory failure treated with noninvasive ventilation? Eur Respir Rev. 2018;27(148):170101.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mirabella L, Cinnella G, Costa R, Cortegiani A, Tullo L, Rauseo M, Conti G, Gregoretti C. Patient-ventilator asynchronies: clinical implications and practical solutions. Respir Care. 2020;65(11):1751–66.

    Article  PubMed  Google Scholar 

  14. Epstein SK. How often does patient-ventilator asynchrony occur and what are the consequences? Respir Care. 2011;56(1):25–38.

    Article  PubMed  Google Scholar 

  15. Hess DR. Patient-ventilator interaction during noninvasive ventilation. Respir Care. 2011;56(2):153–65. discussion 165–7

    Article  PubMed  Google Scholar 

  16. Dres M, Rittayamai N, Brochard L. Monitoring patient-ventilator asynchrony. Curr Opin Crit Care. 2016;22(3):246–53.

    Article  PubMed  Google Scholar 

  17. Di Marco F, Centanni S, Bellone A, Messinesi G, Pesci A, Scala R, Perren A, Nava S. Optimization of ventilator setting by flow and pressure waveforms analysis during noninvasive ventilation for acute exacerbations of COPD: a multicentric randomized controlled trial. Crit Care. 2011;15(6):R283.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roche Campo F, Drouot X, Thille AW, Galia F, Cabello B, d'Ortho MP, Brochard L. Poor sleep quality is associated with late noninvasive ventilation failure in patients with acute hypercapnic respiratory failure. Crit Care Med. 2010;38(2):477–85.

    Article  PubMed  Google Scholar 

  19. Locihová H, Žiaková K. The effects of mechanical ventilation on the quality of sleep of hospitalised patients in the intensive care unit. Rom J Anaesth Intensive Care. 2018;25(1):61–72.

    PubMed  PubMed Central  Google Scholar 

  20. Masip J, Betbesé AJ, Páez J, Vecilla F, Cañizares R, Padró J, Paz MA, de Otero J, Ballús J. Non-invasive pressure support ventilation versus conventional oxygen therapy in acute cardiogenic pulmonary oedema: a randomised trial. Lancet. 2000;356(9248):2126–32.

    Article  CAS  PubMed  Google Scholar 

  21. Delclaux C, L'Her E, Alberti C, Mancebo J, Abroug F, Conti G, Guérin C, Schortgen F, Lefort Y, Antonelli M, Lepage E, Lemaire F, Brochard L. Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: a randomized controlled trial. JAMA. 2000;284(18):2352–60.

    Article  CAS  PubMed  Google Scholar 

  22. Antonelli M, Conti G, Esquinas A, Montini L, Maggiore SM, Bello G, Rocco M, Maviglia R, Pennisi MA, Gonzalez-Diaz G, Meduri GU. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med. 2007;35(1):18–25.

    Article  PubMed  Google Scholar 

  23. Antonelli M, Conti G, Moro ML, Esquinas A, Gonzalez-Diaz G, Confalonieri M, Pelaia P, Principi T, Gregoretti C, Beltrame F, Pennisi MA, Arcangeli A, Proietti R, Passariello M, Meduri GU. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med. 2001;27(11):1718–28.

    Article  CAS  PubMed  Google Scholar 

  24. Carron M, Freo U, BaHammam AS, Dellweg D, Guarracino F, Cosentini R, Feltracco P, Vianello A, Ori C, Esquinas A. Complications of non-invasive ventilation techniques: a comprehensive qualitative review of randomized trials. Br J Anaesth. 2013;110(6):896–914.

    Article  CAS  PubMed  Google Scholar 

  25. Gay PC. Complications of noninvasive ventilation in acute care. Respir Care. 2009;54(2):246–57. discussion 257–8

    PubMed  Google Scholar 

  26. Hilbert G, Clouzeau B, Nam Bui H, Vargas F. Sedation during non-invasive ventilation. Minerva Anestesiol. 2012;78(7):842–6.

    CAS  PubMed  Google Scholar 

  27. Senoglu N, Oksuz H, Dogan Z, Yildiz H, Demirkiran H, Ekerbicer H. Sedation during noninvasive mechanical ventilation with dexmedetomidine or midazolam: a randomized, double-blind, prospective study. Curr Ther Res Clin Exp. 2010;71:141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akada S, Takeda S, Yoshida Y, Nakazato K, Mori M, Hongo T, et al. The efficacy of dexmedetomidine in patients with noninvasive ventilation: a preliminary study. Anesth Analg. 2008;107(1):167–70.

    Article  CAS  PubMed  Google Scholar 

  29. Takasaki Y, Kido T, Semba K. Dexmedetomidine facilitates induction of noninvasive positive pressure ventilation for acute respiratory failure in patients with severe asthma. J Anesth. 2009;23(1):147–50.

    Article  PubMed  Google Scholar 

  30. Huang Z, Chen YS, Yang ZL, Liu JY. Dexmedetomidine versus midazolam for the sedation of patients with non-invasive ventilation failure. Intern Med. 2012;51(17):2299–305.

    Article  CAS  PubMed  Google Scholar 

  31. Clouzeau B, Bui HN, Vargas F, Grenouillet-Delacre M, Guilhon E, Gruson D, et al. Target-controlled infusion of propofol for sedation in patients with noninvasive ventilation failure due to low tolerance: a preliminary study. Intensive Care Med. 2010;36(10):1675–80.

    Article  CAS  PubMed  Google Scholar 

  32. Rocco M, Conti G, Alessandri E, Morelli A, Spadetta G, Laderchi A, et al. Rescue treatment for noninvasive ventilation failure due to interface intolerance with remifentanil analgosedation: a pilot study. Intensive Care Med. 2010;36(12):2060–5.

    Article  PubMed  Google Scholar 

  33. Nava S, Ceriana P. Patient-ventilator interaction during noninvasive positive pressure ventilation. Respir Care Clin N Am. 2005;11:281–93.

    Article  PubMed  Google Scholar 

  34. Shelly MP, Sultan MA, Bodenham A, Park GR. Midazolam infusions in critically ill patients. Eur J Anaesthesiol. 1991;8:21–7.

    CAS  PubMed  Google Scholar 

  35. Vaschetto R, Cammarota G, Colombo D, Longhini F, Grossi F, Giovanniello A, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42:74–82.

    Article  CAS  PubMed  Google Scholar 

  36. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol (1985). 2006;101(2):618–27.

    Article  PubMed  Google Scholar 

  37. Lee LY, Pisarri TE. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol. 2001;125(1–2):47–65.

    Article  CAS  PubMed  Google Scholar 

  38. Bailey EF, Fregosi RF. Modulation of upper airway muscle activities by bronchopulmonary afferents. J Appl Physiol (1985). 2006;101(2):609–17.

    Article  PubMed  Google Scholar 

  39. Sant'Ambrogio G, Widdicombe J. Reflexes from airway rapidly adapting receptors. Respir Physiol. 2001;125(1–2):33–45.

    Article  CAS  PubMed  Google Scholar 

  40. Davies A, Pirie L, Eyre-Todd RA. Adaptation of pulmonary receptors in the spontaneously breathing anaesthetized rat. Eur Respir J. 1996;9(8):1637–42.

    Article  CAS  PubMed  Google Scholar 

  41. Conde B, Martins N, Brandão M, Pimenta AC, Winck JC. Upper airway video endoscopy: assessment of the response to positive pressure ventilation and mechanical in-exsufflation. Pulmonology. 2019;25(5):299–304.

    Article  CAS  PubMed  Google Scholar 

  42. Parreira VF, Jounieaux V, Aubert G, Dury M, Delguste PE, Rodenstein DO. Nasal two-level positive-pressure ventilation in normal subjects. Effects of the glottis and ventilation. Am J Respir Crit Care Med. 1996;153(5):1616–23.

    Article  CAS  PubMed  Google Scholar 

  43. Parreira VF, Delguste P, Jounieaux V, Aubert G, Dury M, Rodenstein DO. Glottic aperture and effective minute ventilation during nasal two-level positive pressure ventilation in spontaneous mode. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1857–63.

    Article  CAS  PubMed  Google Scholar 

  44. Marques M, Genta PR, Sands SA, Azarbazin A, de Melo C, Taranto-Montemurro L, White DP, Wellman A. Effect of sleeping position on upper airway patency in obstructive sleep apnea is determined by the pharyngeal structure causing collapse. Sleep. 2017;40(3):zsx005.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schorr F, Genta PR, Gregório MG, Danzi-Soares NJ, Lorenzi-Filho G. Continuous positive airway pressure delivered by oronasal mask may not be effective for obstructive sleep apnoea. Eur Respir J. 2012;40(2):503–5.

    Article  PubMed  Google Scholar 

  46. Ng JR, Aiyappan V, Mercer J, Catcheside PG, Chai-Coetzer CL, McEvoy RD, Antic N. Choosing an Oronasal mask to deliver continuous positive airway pressure may cause more upper airway obstruction or lead to higher continuous positive airway pressure requirements than a nasal mask in some patients: a case series. J Clin Sleep Med. 2016;12(9):1227–32.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jounieaux V, Aubert G, Dury M, Delguste P, Rodenstein DO. Effects of nasal positive-pressure hyperventilation on the glottis in normal awake subjects. J Appl Physiol (1985). 1995;79(1):176–85.

    Article  CAS  PubMed  Google Scholar 

  48. Sayas Catalán J, Jiménez Huerta I, Benavides Mañas P, Luján M, López-Padilla D, Arias Arias E, Hernández Voth A, Rabec C. Videolaryngoscopy with noninvasive ventilation in subjects with upper-airway obstruction. Respir Care. 2017;62(2):222–30.

    Article  PubMed  Google Scholar 

  49. Sassoon CS. Triggering of the ventilator in patient-ventilator interactions. Respir Care. 2011;56(1):39–51.

    Article  PubMed  Google Scholar 

  50. Genta PR, Schorr F, Eckert DJ, Gebrim E, Kayamori F, Moriya HT, Malhotra A, Lorenzi-Filho G. Upper airway collapsibility is associated with obesity and hyoid position. Sleep. 2014;37(10):1673–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bourke SC, Bullock RE, Williams TL, Shaw PJ, Gibson GJ. Noninvasive ventilation in ALS: indications and effect on quality of life. Neurology. 2003;61(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  52. Farrero E, Prats E, Povedano M, Martinez-Matos JA, Manresa F, Escarrabill J. Survival in amyotrophic lateral sclerosis with home mechanical ventilation: the impact of systematic respiratory assessment and bulbar involvement. Chest. 2005;127(6):2132–8.

    Article  PubMed  Google Scholar 

  53. Sahni AS, Wolfe L. Respiratory Care in Neuromuscular Diseases. Respir Care. 2018;63(5):601–8.

    Article  PubMed  Google Scholar 

  54. Sanches I, Martins V, Santos JMD. Obstructive sleep apnea refractory to treatment due to floppy epiglottis. Arch Bronconeumol. 2015;51(2):94.

    Article  PubMed  Google Scholar 

  55. Lisboa C, Díaz O, Fadic R. Ventilación mecánica no invasiva en pacientes con enfermedades neuromusculares y en pacientes con alteraciones de la caja torácica [noninvasive mechanical ventilation in patients with neuromuscular diseases and in patients with chest restriction]. Arch Bronconeumol. 2003;39(7):314–20.

    Article  CAS  PubMed  Google Scholar 

  56. Duan J, Han X, Bai L, Zhou L, Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  57. Liengswangwong W, Yuksen C, Thepkong T, Nakasint P, Jenpanitpong C. Early detection of non-invasive ventilation failure among acute respiratory failure patients in the emergency department. BMC Emerg Med. 2020;20(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stefan MS, Priya A, Pekow PS, Steingrub JS, Hill NS, Lagu T, Raghunathan K, Bhat AG, Lindenauer PK. A scoring system derived from electronic health records to identify patients at high risk for noninvasive ventilation failure. BMC Pulm Med. 2021;21(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Costanzo, D., Mazza, M. (2023). Noninvasive Ventilation Success and Failure Risk Factors: The Role of Upper Airways. In: Esquinas, A.M., De Vito, A., Barbetakis, N. (eds) Upper Airway Disorders and Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-031-32487-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32487-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32486-4

  • Online ISBN: 978-3-031-32487-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics