Skip to main content

Relationship Between Mask Interface and Upper Airway Anatomy and Physiology

  • Chapter
  • First Online:
Upper Airway Disorders and Noninvasive Mechanical Ventilation

Abstract

The upper airways are part of the respiratory system. The nose, lips and trachea are essential contributors to overall respiratory resistance and the conditioning of the inspired air. They play a crucial role during noninvasive ventilation (NIV), and their patency can determine success or failure. Their involvement represents a substantial difference from invasive ventilation, where the endotracheal tube bypasses the upper airways and the endotracheal tube cuff closes. During NIV, on the other hand, the airways play an essential role and determine with their characteristics the efficiency of the ventilation delivered and the ventilator’s settings. NIV can, in turn, influence their tone and their calibre. Their physiology has been the subject of multiple studies evaluating patency and collapse factors. Pathological states and the sleep-wake rhythm influence patency and collapse. Different models can explain the behaviour of the upper airways, including the “balance of forces” or the balance between the suction pressure of the airways during inspiration and the dilator tone of the upper airways. In this chapter, all these aspects will be analysed, which, as anticipated, are of fundamental importance in applying the NIV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ARF:

Acute respiratory failure

EMG:

Electromyography

GG:

Genioglossal activity

NIV:

Noninvasive ventilation

OSA:

Obstructive sleep apnoea

References

  1. Strohl KP, Butler JP, Malhotra A. Mechanical properties of the upper airway. Compr Physiol. 2012;2(3):1853–72.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carley DW, Farabi SS. Physiology of sleep. Diabetes Spectr. 2016;29(1):5–9. https://doi.org/10.2337/diaspect.29.1.5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ayappa I, Rapoport DM. The upper airway in sleep: physiology of the pharynx. Sleep Med Rev. 2003;7(1):9–33.

    Article  PubMed  Google Scholar 

  4. Passos UL, Genta PR, Marcondes BF, Lorenzi-Filho G, Gebrim EMMS. State-dependent changes in the upper airway assessed by multidetector CT in healthy individuals and during obstructive events in patients with sleep apnea. J Bras Pneumol. 2019;45(4):e20180264. Published 2019 Aug 15

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mete A, Akbudak İ. Functional anatomy and physiology of airway. In: Erbay R, editor. Tracheal intubation. IntechOpen; 2018.

    Google Scholar 

  6. Schwab RJ, Gefter WB, Pack AI, Hoffman EA. Dynamic imaging of the upper airway during respiration in normal subjects. J Appl Physiol. 1993;74(4):1504–14.

    Article  CAS  PubMed  Google Scholar 

  7. Hogg JC, Paré PD, Hackett TL. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. [published correction appears in Physiol rev. 2018 Jul 1;98(3):1909]. Physiol Rev. 2017;97(2):529–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roy B, Samson N, Moreau-Bussière F, Ouimet A, Dorion D, Mayer S, Praud J-P. Mechanisms of active laryngeal closure during noninvasive intermittent positive pressure ventilation in nonsedated lambs. J Appl Physiol. 2008;105:1406–12.

    Article  PubMed  Google Scholar 

  9. Butler JE, Hudson AL, Gandevia SC. The neural control of human inspiratory muscles. Prog Brain Res. 2014;209:295–308.

    Article  PubMed  Google Scholar 

  10. Malhotra A, Fogel RB, Edwards JK, Shea SA, White DP. Local mechanisms drive genioglossus activation in obstructive sleep apnea. Am J Respir Crit Care Med. 2000;161(5):1746–9.

    Article  CAS  PubMed  Google Scholar 

  11. Fogel RB, Malhotra A, Shea SA, Edwards JK, White DP. Reduced genioglossal activity with upper airway anesthesia in awake patients with OSA. J Appl Physiol. 2000;88(4):1346–54.

    Article  CAS  PubMed  Google Scholar 

  12. Oliven R, Cohen G, Somri M, Schwartz AR, Oliven A. Relationship between the activity of the genioglossus, other peri-pharyngeal muscles and flow mechanics during wakefulness and sleep in patients with OSA and healthy subjects. Respir Physiol Neurobiol. 2020;274:103362.

    Article  PubMed  Google Scholar 

  13. Moreau-Bussière F, Samson N, St-Hilaire M, Reix P, Lafond JR, Nsegbe É, Praud J-P. Laryngeal response to nasal ventilation in nonsedated newborn lambs. J Appl Physiol. 2007;17:2149–57.

    Article  Google Scholar 

  14. Rodenstein DO, Dooms G, Thomas Y, et al. Pharyngeal shape and dimensions in healthy subjects, snorers, and patients with obstructive sleep apnoea. Thorax. 1990;45:722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Navalesi P, Costa R. New modes of mechanical ventilation: proportional assist ventilation, neurally adjusted ventilatory assist, and fractal ventilation. Curr Opin Crit Care. 2003;9(1):51–8.

    Article  PubMed  Google Scholar 

  16. Piquilloud L, Tassaux D, Bialais E, Lambermont B, Sottiaux T, Roeseler J, Laterre PF, Jolliet P, Revelly JP. Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interaction during non-invasive ventilation delivered by face mask. Intensive Care Med. 2012;38(10):1624–31.

    Article  PubMed  Google Scholar 

  17. Vignaux L, Vargas F, Roeseler J, Tassaux D, Thille AW, Kossowsky MP, Brochard L, Jolliet P. Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med. 2009;35(5):840–6.

    Article  PubMed  Google Scholar 

  18. Cheng S, Butler JE, Gandevia SC, Bilston LE. Movement of the human upper airway during inspiration with and without inspiratory resistive loading. J Appl Physiol. 2010;110:69.

    Article  PubMed  Google Scholar 

  19. Bertrand PM, Futier E, Coisel Y, Matecki S, Jaber S, Constantin JM. Neurally adjusted ventilatory assist vs pressure support ventilation for noninvasive ventilation during acute respiratory failure: a crossover physiologic study. Chest. 2013;143(1):30–6.

    Article  PubMed  Google Scholar 

  20. Carron M, Freo U, BaHammam AS, et al. Complications of non-invasive ventilation techniques: a comprehensive qualitative review of randomized trials. Br J Anaesth. 2013;110:896–914.

    Article  CAS  PubMed  Google Scholar 

  21. Girault C, Briel A, Benichou J, et al. Interface strategy during noninvasive positive pressure ventilation for hypercapnic acute respiratory failure. Crit Care Med. 2009;37:124–31.

    Article  PubMed  Google Scholar 

  22. Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009;374:250–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sassoon C. Triggering of the ventilator in patient-ventilator interactions. Respir Care. 2011;56:39–51.

    Article  PubMed  Google Scholar 

  24. Moretti M, Cilione C, Tampieri A, Fracchia C, Marchioni A, Nava S. Incidence and causes of non-invasive mechanical ventilation failure after initial success. Thorax. 2000;55:819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lemyze M, Mallat J, Nigeon O, et al. Rescue therapy by switching to total face mask after failure of face mask-delivered noninvasive ventilation in do-not intubate patients in acute respiratory failure. Crit Care Med. 2013;41:481.

    Article  PubMed  Google Scholar 

  26. Crimi C, Noto A, Princi P, et al. A European survey of noninvasive ventilation practices. Eur Respir J. 2010;36:362–9.

    Article  CAS  PubMed  Google Scholar 

  27. Fraticelli AT, Lellouche F, L’Her E, et al. Physiological effects of different interfaces during noninvasive ventilation for acute respiratory failure. Crit Care Med. 2009;37:939–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fiorentino, G., Lanza, M., Annunziata, A. (2023). Relationship Between Mask Interface and Upper Airway Anatomy and Physiology. In: Esquinas, A.M., De Vito, A., Barbetakis, N. (eds) Upper Airway Disorders and Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-031-32487-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32487-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32486-4

  • Online ISBN: 978-3-031-32487-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics