Skip to main content

Part of the book series: Lessons from the ICU ((LEICU))

  • 908 Accesses

Abstract

Ultrasound-guided cannulation of veins and arteries has become the gold standard technique in critically ill patients. The internal jugular vein was the first site at which landmark-based and ultrasound techniques were compared; the results showed that the latter was associated with higher overall and first-attempt success rates and complication rates for both experienced and inexperienced operators. Given the high level of evidence, all medical societies and expert panels now recommend cannulating the internal jugular vein with ultrasound guidance. Many other studies have assessed ultrasound-guided cannulation for other vessels (including the femoral, subclavian, and peripheral veins and the radial and femoral arteries) in adult and pediatric patients. Almost all these studies demonstrated that ultrasound is very useful in decreasing the time to success, increasing the success rate, and decreasing the complication rate, although levels of evidence are lower for some vessels than for the internal jugular vein. Oblique, short-axis, and long-axis views have all been used to monitor vessel puncture and offer similar levels of cannulation accuracy. The patient’s level of comfort is much higher when ultrasound-guided techniques are applied. The challenge now is to train all residents in this technique, so training programs should be available in all hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. iData Research. U.S. market for vascular access devices and accessories. Vancouver: iData Research; 2008.

    Google Scholar 

  2. Millennium Research Group. U.S. markets for vascular access devices. Toronto: Millennium Research Group; 2009.

    Google Scholar 

  3. Calvert N, Hind D, McWilliams RG, Thomas SM, Beverley C, Davidson A. The effectiveness and cost-effectiveness of ultrasound locating devices for central venous access: a systematic review and economic evaluation. Health Technol Assess. 2003;7(12):1–84.

    Article  CAS  PubMed  Google Scholar 

  4. Food and Drug Administration. Precautions necessary with central venous catheters. FDA Drug Bull. 1989:15–6.

    Google Scholar 

  5. Slama M, Novara A, Safavian A, Ossart M, Safar M, Fagon JY. Improvement of internal jugular vein cannulation using an ultrasound-guided technique. Intensive Care Med. 1997;23(8):916–9.

    Article  CAS  PubMed  Google Scholar 

  6. Denys BG, Uretsky BF, Reddy PS. Ultrasound-assisted cannulation of the internal jugular vein. A prospective comparison to the external landmark-guided technique. Circulation. 1993;87(5):1557–62.

    Article  CAS  PubMed  Google Scholar 

  7. Stern W, Sauer W, Dauber W. Complications of central venous catheterization from an anatomical point of view. Acta Anat (Basel). 1990;138(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  8. Lamkinsi T, Kettani A, Belkhadir Z, Tadili J, Benjelloun MY, Mosadik A, et al. Internal jugular venous cannulation: what is the best approach? Ann Fr Anesth Reanim. 2012;31:512–6.

    Article  CAS  PubMed  Google Scholar 

  9. Chudhari LS, Karmarkar US, Dixit RT, Sonia K. Comparison of two different approaches for internal jugular vein cannulation in surgical patients. J Postgrad Med. 1998;44:57–62.

    CAS  PubMed  Google Scholar 

  10. Apiliogullari B, Kara I, Apiliogullari S, Arun O, Saltali A, Celik JB. Is a neutral head position as effective as head rotation during landmark-guided internal jugular vein cannulation? Results of a randomized controlled clinical trial. J Cardiothorac Vasc Anesth. 2012;26(6):985–8.

    Article  PubMed  Google Scholar 

  11. Lamperti M, Subert M, Cortellazzi P, Vailati D, Borrelli P, Montomoli C, D’Onofrio G, Caldiroli D. Is a neutral head position safer than 45-degree neck rotation during ultrasound-guided internal jugular vein cannulation? Results of a randomized controlled clinical trial. Anesth Analg. 2012;114(4):777–84.

    Article  PubMed  Google Scholar 

  12. Maecken T, Marcon C, Bomas S, Zenz M, Grau T. Relationship of the internal jugular vein to the common carotid artery: implications for ultrasound-guided vascular access. Eur J Anaesthesiol. 2011;28(5):351–5.

    Article  PubMed  Google Scholar 

  13. Samy Modeliar S, Sevestre MA, de Cagny B, Slama M. Ultrasound evaluation of central veins in the intensive care unit: effects of dynamic manoeuvres. Intensive Care Med. 2008;34(2):333–8.

    Article  PubMed  Google Scholar 

  14. Garcia-Leal M, Guzman-Lopez S, Verdines-Perez AM, de Leon-Gutierrez H, Fernandez-Rodarte BA, Alvarez-Villalobos NA, Martinez-Garza JH, Quiroga-Garza A, Elizondo-Omaña RE. Trendelenburg position for internal jugular vein catheterization: a systematic review and meta-analysis. J Vasc Access. 2021;24:11297298211031339.

    Google Scholar 

  15. Jeon JC, Choi WI, Lee JH, Lee SH. Anatomical morphology analysis of internal jugular veins and factors affecting internal jugular vein size. Medicina (Kaunas). 2020;56(3):135.

    Article  PubMed  Google Scholar 

  16. Piton G, Capellier G, Winiszewski H. Ultrasound-guided vessel puncture: calling for Pythagoras’ help. Crit Care. 2018;22:292.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. Cochrane Database Syst Rev. 2015;1(1):CD006962.

    PubMed  Google Scholar 

  18. Franco-Sadud R, Schnobrich D, Mathews BK, Candotti C, Abdel-Ghani S, Perez MG, Rodgers SC, Mader MJ, Haro EK, Dancel R, Cho J, Grikis L, Lucas BP, SHM point-of-care ultrasound task force, Soni NJ. Recommendations on the use of ultrasound guidance for central and peripheral vascular access in adults: a position statement of the Society of Hospital Medicine. J Hosp Med. 2019;14:E1–E22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Saugel B, Scheeren TWL, Teboul JL. Ultrasound-guided central venous catheter placement: a structured review and recommendations for clinical practice. Crit Care. 2017;21(1):225.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Timsit JF, Baleine J, Bernard L, Calvino-Gunther S, Darmon M, Dellamonica J, Desruennes E, Leone M, Lepape A, Leroy O, Lucet JC, Merchaoui Z, Mimoz O, Misset B, Parienti JJ, Quenot JP, Roch A, Schmidt M, Slama M, Souweine B, Zahar JR, Zingg W, Bodet-Contentin L, Maxime V. Expert consensus-based clinical practice guidelines management of intravascular catheters in the intensive care unit. Ann Intensive Care. 2020;10(1):118.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leibowitz A, Oren-Grinberg A, Matyal R. Ultrasound guidance for central venous access: current evidence and clinical recommendations. J Intensive Care Med. 2020;35(3):303–21.

    Article  PubMed  Google Scholar 

  22. Schmidt GA, Blaivas M, Conrad SA, Corradi F, Koenig S, Lamperti M, Saugel B, Schummer W, Slama M. Ultrasound-guided vascular access in critical illness. Intensive Care Med. 2019;45(4):434–46.

    Article  CAS  PubMed  Google Scholar 

  23. Lamperti M, Bodenham AR, Pittiruti M, Blaivas M, Augoustides JG, Elbarbary M, Pirotte T, Karakitsos D, Ledonne J, Doniger S, Scoppettuolo G, Feller-Kopman D, Schummer W, Biffi R, Desruennes E, Melniker LA, Verghese ST. International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med. 2012;38(7):1105–17.

    Article  PubMed  Google Scholar 

  24. Javeri Y, Jagathkar G, Dixit S, Chaudhary D, Zirpe KG, Mehta Y, Govil D, Mishra RC, Samavedam S, Pandit RA, Savio RD, Clerk AM, Srinivasan S, Juneja D, Ray S, Sahoo TK, Jakkinaboina S, Jampala N, Jain R. Indian Society of Critical Care Medicine position statement for central venous catheterization and management 2020. Indian J Crit Care Med. 2020;24(Suppl 1):S6–S30.

    PubMed  PubMed Central  Google Scholar 

  25. Robba C, Wong A, Poole D, Al Tayar A, Arntfield RT, Chew MS, Corradi F, Douflé G, Goffi A, Lamperti M, Mayo P, Messina A, Mongodi S, Narasimhan M, Puppo C, Sarwal A, Slama M, Taccone FS, Vignon P, Vieillard-Baron A, European Society of Intensive Care Medicine task force for critical care ultrasonography. Basic ultrasound head-to-toe skills for intensivists in the general and neuro intensive care unit population: consensus and expert recommendations of the European Society of Intensive Care Medicine. Intensive Care Med. 2021;47(12):1347–67.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maizel J, Ammirati C, Slama M. Posterior vessel wall penetration by needles during internal jugular vein central catheter placement using ultrasound guidance: is that a real danger? Crit Care Med. 2010;38(2):735–6; author reply 736–7.

    Article  PubMed  Google Scholar 

  27. Maitra S, Bhattacharjee S, Baidya DK. Comparison of long-, short-, and oblique-axis approaches for ultrasound-guided internal jugular vein cannulation: a network meta-analysis. J Vasc Access. 2020;21(2):204–9.

    Article  PubMed  Google Scholar 

  28. Miao S, Wang X, Zou L, Zhao Y, Wang G, Liu Y, Liu S. Safety and efficacy of the oblique-axis plane in ultrasound-guided internal jugular vein puncture: a meta-analysis. J Int Med Res. 2018;46(7):2587–94.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baidya DK, Chandralekha DV, Pandey R, Goswami D, Maitra S. Comparative sonoanatomy of classic “short axis” probe position with a novel “medial-oblique” probe position for ultrasound-guided internal jugular vein cannulation: a crossover study. J Emerg Med. 2015;48(5):590–6. https://doi.org/10.1016/j.jemermed.2014.07.062. Epub 2015 Jan 24

    Article  PubMed  Google Scholar 

  30. Vogel JA, Haukoos JS, Erickson CL, Liao MM, Theoret J, Sanz GE, Kendall J. Is long-axis view superior to short-axis view in ultrasound-guided central venous catheterization? Crit Care Med. 2015;43(4):832–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dilisio R, Mittnacht AJ. The “medial-oblique” approach to ultrasound-guided central venous cannulation—maximize the view, minimize the risk. J Cardiothorac Vasc Anesth. 2012;26(6):982–4.

    Article  PubMed  Google Scholar 

  32. Chen JY, Wang LK, Lin YT, Lan KM, Loh EW, Chen CH, Tam KW. Comparing short-, long-, and oblique-axis approaches to ultrasound-guided internal jugular venous catheterization: a meta-analysis of randomized controlled trials. J Trauma Acute Care Surg. 2019;86(3):516–23.

    Article  PubMed  Google Scholar 

  33. Airapetian N, Maizel J, Langelle F, Modeliar SS, Karakitsos D, Dupont H, Slama M. Ultrasound-guided central venous cannulation is superior to quick-look ultrasound and landmark methods among inexperienced operators: a prospective randomized study. Intensive Care Med. 2013;39(11):1938–44.

    Article  PubMed  Google Scholar 

  34. Lau CS, Chamberlain RS. Ultrasound-guided central venous catheter placement increases success rates in pediatric patients: a meta-analysis. Pediatr Res. 2016;80(2):178–84.

    Article  PubMed  Google Scholar 

  35. Chui J, Saeed R, Jakobowski L, Wang W, Eldeyasty B, Zhu F, Fochesato L, Lavi R, Bainbridge D. Is routine chest X-ray after ultrasound-guided central venous catheter insertion choosing wisely?: A population-based retrospective study of 6,875 patients. Chest. 2018;154(1):148–56.

    Article  PubMed  Google Scholar 

  36. Smit JM, Haaksma ME, Lim EHT, Steenvoorden TS, Blans MJ, Bosch FH, Petjak M, Vermin B, Touw HRW, Girbes ARJ, Heunks LMA, Tuinman PR. Ultrasound to detect central venous catheter placement associated complications: a multicenter diagnostic accuracy study. Anesthesiology. 2020;132(4):781–94.

    Article  PubMed  Google Scholar 

  37. Smit JM, Raadsen R, Blans MJ, Petjak M, Van de Ven PM, Tuinman PR. Bedside ultrasound to detect central venous catheter misplacement and associated iatrogenic complications: a systematic review and meta-analysis. Crit Care. 2018;22(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Korsten P, Mavropoulou E, Wienbeck S, Ellenberger D, Patschan D, Zeisberg M, Vasko R, Tampe B, Müller GA. The “rapid atrial swirl sign” for assessing central venous catheters: performance by medical residents after limited training. PLoS One. 2018;13(7):e0199345.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ablordeppey EA, Drewry AM, Beyer AB, Theodoro DL, Fowler SA, Fuller BM, Carpenter CR. Diagnostic accuracy of central venous catheter confirmation by bedside ultrasound versus chest radiography in critically ill patients: a systematic review and meta-analysis. Crit Care Med. 2017;45(4):715–24.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Weekes AJ, Keller SM, Efune B, Ghali S, Runyon M. Prospective comparison of ultrasound and CXR for confirmation of central vascular catheter placement. Emerg Med J. 2016;33(3):176–80.

    Article  PubMed  Google Scholar 

  41. Fragou M, Gravvanis A, Dimitriou V, Papalois A, Kouraklis G, Karabinis A, Saranteas T, Poularas J, Papanikolaou J, Davlouros P, Labropoulos N, Karakitsos D. Real-time ultrasound-guided subclavian vein cannulation versus the landmark method in critical care patients: a prospective randomized study. Crit Care Med. 2011;39(7):1607–12.

    Article  PubMed  Google Scholar 

  42. Subramony R, Spann R, Medak A, Campbell C. Ultrasound-guided vs. landmark method for subclavian vein catheterization in an academic emergency department. J Emerg Med. 2022;62(6):760–8.

    Article  PubMed  Google Scholar 

  43. Vezzani A, Manca T, Brusasco C, Santori G, Cantadori L, Ramelli A, Gonzi G, Nicolini F, Gherli T, Corradi F. A randomized clinical trial of ultrasound-guided infra-clavicular cannulation of the subclavian vein in cardiac surgical patients: short-axis versus long-axis approach. Intensive Care Med. 2017;43(11):1594–601.

    Article  PubMed  Google Scholar 

  44. Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for subclavian or femoral vein catheterization. Cochrane Database Syst Rev. 2015;1(1):CD011447.

    PubMed  Google Scholar 

  45. Farina A, Coppola G, Bassanelli G, Bianchi A, Lenatti L, Ferri LA, Liccardo B, Spinelli E, Savonitto S, Mauri T. Ultrasound-guided central venous catheter placement through the axillary vein in cardiac critical care patients: safety and feasibility of a novel technique in a prospective observational study. Minerva Anestesiol. 2020;86(2):157–64.

    Article  PubMed  Google Scholar 

  46. Buzançais G, Roger C, Bastide S, Jeannes P, Lefrant JY, Muller L. Comparison of two ultrasound guided approaches for axillary vein catheterization: a randomized controlled non-inferiority trial. Br J Anaesth. 2016;116(2):215–22.

    Article  PubMed  Google Scholar 

  47. Wang HY, Sheng RM, Gao YD, Wang XM, Zhao WB. Ultrasound-guided proximal versus distal axillary vein puncture in elderly patients: a randomized controlled trial. J Vasc Access. 2020;21(6):854–60.

    Article  PubMed  Google Scholar 

  48. De Cassai A, Galligioni H. Subclavian oblique-axis catheterization technique. Crit Care. 2017;21(1):323.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kim H, Chang JE, Won D, Lee JM, Kim TK, Min SW, Kim C, Hwang JY. Effect of head and shoulder positioning on the cross-sectional area of the subclavian vein in obese subjects. Am J Emerg Med. 2021;50:561–5.

    Article  PubMed  Google Scholar 

  50. Mageshwaran T, Singla D, Agarwal A, Kumar A, Tripathy DK, Agrawal S. Comparative efficacy of supraclavicular versus infraclavicular approach of subclavian vein cannulation under ultrasound guidance: a randomised clinical trial. Indian J Anaesth. 2021;65(Suppl 2):S69–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nazir A, Niazi K, Zaidi SMJ, Ali M, Maqsood S, Malik J, Kaneez M, Mehmoodi A. Success rate and complications of the supraclavicular approach for central venous access: a systematic review. Cureus. 2022;14(4):e23781.

    PubMed  PubMed Central  Google Scholar 

  52. Chen Q, Long Q, Liang JQ, Tang TX, Yang B. Comparative evaluation of the clinical safety and efficiency of supraclavicular and infraclavicular approaches for subclavian venous catheterization in adults: a meta-analysis. Am J Emerg Med. 2020;38(7):1475–80.

    Article  PubMed  Google Scholar 

  53. Kim YJ, Ma S, Yoon HK, Lee HC, Park HP, Oh H. Supraclavicular versus infraclavicular approach for ultrasound-guided right subclavian venous catheterisation: a randomised controlled non-inferiority trial. Anaesthesia. 2022;77(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  54. Adrian M, Kander T, Lundén R, Borgquist O. The right supraclavicular fossa ultrasound view for correct catheter tip positioning in right subclavian vein catheterisation: a prospective observational study. Anaesthesia. 2022;77(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  55. Tarbiat M, Manafi B, Davoudi M, Totonchi Z. Comparison of the complications between left side and right side subclavian vein catheter placement in patients undergoing coronary artery bypass graft surgery. J Cardiovasc Thorac Res. 2014;6:147–51.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nardi N, Wodey E, Laviolle B, De La Brière F, Delahaye S, Engrand C, Gauvrit C, Dessard S, Defontaine A, Ecoffey C. Effectiveness and complications of ultrasound-guided subclavian vein cannulation in children and neonates. Anaesth Crit Care Pain Med. 2016;35(3):209–13.

    Article  PubMed  Google Scholar 

  57. Byon HJ, Lee GW, Lee JH, Park YH, Kim HS, Kim CS, Kim JT. Comparison between ultrasound-guided supraclavicular and infraclavicular approaches for subclavian venous catheterization in children—a randomized trial. Br J Anaesth. 2013;111(5):788–92.

    Article  PubMed  Google Scholar 

  58. Rhondali O, Attof R, Combet S, Chassard D, de Queiroz Siqueira M. Ultrasound-guided subclavian vein cannulation in infants: supraclavicular approach. Paediatr Anaesth. 2011;21(11):1136–41.

    Article  PubMed  Google Scholar 

  59. Pirotte T, Veyckemans F. Ultrasound-guided subclavian vein cannulation in infants and children: a novel approach. Br J Anaesth. 2007;98(4):509–14.

    Article  CAS  PubMed  Google Scholar 

  60. Hilty WM, Hudson PA, Levitt MA, Hall JB. Real-time ultrasound-guided femoral vein catheterization during cardiopulmonary resuscitation. Ann Emerg Med. 1997;29(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  61. Sobolev M, Shiloh AL, Di Biase L, Slovut DP. Ultrasound-guided cannulation of the femoral vein in electrophysiological procedures: a systematic review and meta-analysis. Europace. 2017;19(5):850–5.

    PubMed  Google Scholar 

  62. Yamagata K, Wichterle D, Roubícek T, Jarkovský P, Sato Y, Kogure T, Peichl P, Konecný P, Jansová H, Kucera P, Aldhoon B, Cihák R, Sugimura Y, Kautzner J. Ultrasound-guided versus conventional femoral venipuncture for catheter ablation of atrial fibrillation: a multicentre randomized efficacy and safety trial (ULTRA-FAST trial). Europace. 2018;20(7):1107–14.

    Article  PubMed  Google Scholar 

  63. Triantafyllou K, Karkos CD, Fragakis N, Antoniadis AP, Meletidou M, Vassilikos V. Ultrasound-guided versus anatomic landmark-guided vascular access in cardiac electrophysiology procedures: a systematic review and meta-analysis. Indian Pacing Electrophysiol J. 2022;22(3):145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lazaar S, Mazaud A, Delsuc C, Durand M, Delwarde B, Debord S, Hengy B, Marcotte G, Floccard B, Dailler F, Chirossel P, Bureau-Du-Colombier P, Berthiller J, Rimmelé T. Ultrasound guidance for urgent arterial and venous catheterisation: randomised controlled study. Br J Anaesth. 2021;127(6):871–8.

    Article  PubMed  Google Scholar 

  65. Sazdov D, Srceva MJ, Todorova ZN. Comparative analysis of ultrasound guided central venous catheterization compared to blind catheterization. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2017;38(2):107–14.

    PubMed  Google Scholar 

  66. Tan Y, Liu L, Tu Z, Xu Y, Xie J, Ye P. Distal superficial femoral vein versus axillary vein central catheter placement under ultrasound guidance for neonates with difficult access: a randomized clinical trial. J Vasc Access. 2021;22(4):642–9.

    Article  PubMed  Google Scholar 

  67. Pietroboni PF, Carvajal CM, Zuleta YI, Ortiz PL, Lucero YC, Drago M, vonDessauer B. Landmark versus ultrasound-guided insertion of femoral venous catheters in the pediatric intensive care unit: an efficacy and safety comparison study. Med Intensiva (Engl Ed). 2020;44(2):96–100.

    Article  CAS  PubMed  Google Scholar 

  68. Stolz LA, Stolz U, Howe C, Farrell IJ, Adhikari S. Ultrasound-guided peripheral venous access: a meta-analysis and systematic review. J Vasc Access. 2015;16(4):321–6.

    Article  PubMed  Google Scholar 

  69. Egan G, Healy D, O’Neill H, Clarke-Moloney M, Grace PA, Walsh SR. Ultrasound guidance for difficult peripheral venous access: systematic review and meta-analysis. Emerg Med J. 2013;30(7):521–6.

    Article  PubMed  Google Scholar 

  70. van Loon FHJ, Buise MP, Claassen JJF, Dierick-van Daele ATM, Bouwman ARA. Comparison of ultrasound guidance with palpation and direct visualisation for peripheral vein cannulation in adult patients: a systematic review and meta-analysis. Br J Anaesth. 2018;121(2):358–66.

    Article  PubMed  Google Scholar 

  71. Gottlieb M, Sundaram T, Holladay D, Nakitende D. Ultrasound-guided peripheral intravenous line placement: a narrative review of evidence-based best practices. West J Emerg Med. 2017;18(6):1047–54.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kleidon TM, Schults J, Paterson R, Rickard CM, Ullman AJ. Comparison of ultrasound-guided peripheral intravenous catheter insertion with landmark technique in paediatric patients: a systematic review and meta-analysis. J Paediatr Child Health. 2022;58(6):953–61.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mitchell EO, Jones P, Snelling PJ. Ultrasound for pediatric peripheral intravenous catheter insertion: a systematic review. Pediatrics. 2022;149(5):e2021055523.

    Article  PubMed  Google Scholar 

  74. Hansen MA, Juhl-Olsen P, Thorn S, Frederiksen CA, Sloth E. Ultrasonography-guided radial artery catheterization is superior compared with the traditional palpation technique: a prospective, randomized, blinded, crossover study. Acta Anaesthesiol Scand. 2014;58(4):446–52.

    Article  CAS  PubMed  Google Scholar 

  75. Gopalasingam N, Hansen MA, Thorn S, Sloth E, Juhl-Olsen P. Ultrasound-guided radial artery catheterisation increases the success rate among anaesthesiology residents: a randomised study. J Vasc Access. 2017;18(6):546–51.

    Article  PubMed  Google Scholar 

  76. Kiberenge RK, Ueda K, Rosauer B. Ultrasound-guided dynamic needle tip positioning technique versus palpation technique for radial arterial cannulation in adult surgical patients: a randomized controlled trial. Anesth Analg. 2018;126(1):120–6.

    Article  PubMed  Google Scholar 

  77. Shim JG, Cho EA, Gahng TR, Park J, Lee EK, Oh EJ, Ahn JH. Application of the dynamic needle tip positioning method for ultrasound-guided arterial catheterization in elderly patients: a randomized controlled trial. PLoS One. 2022;17(8):e0273563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim SY, Kim KN, Jeong MA, Lee BS, Lim HJ. Ultrasound-guided dynamic needle tip positioning technique for radial artery cannulation in elderly patients: a prospective randomized controlled study. PLoS One. 2021;16(5):e0251712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Araj FG, Pena J, Cox J. Aim for the bubbles: agitated saline injection as an adjunct technique to ultrasound-guided subclavian vein cannulation. J Invasive Cardiol. 2019;31(7):E232.

    PubMed  Google Scholar 

  80. Flumignan RL, Trevisani VF, Lopes RD, Baptista-Silva JC, Flumignan CD, Nakano LC. Ultrasound guidance for arterial (other than femoral) catheterisation in adults. Cochrane Database Syst Rev. 2021;10(10):CD013585. https://doi.org/10.1002/14651858.CD013585.pub2.

    Article  PubMed  Google Scholar 

  81. Min SW, Cho HR, Jeon YT, Oh AY, Park HP, Yang CW, Choi WH, Kim BG. Effect of bevel direction on the success rate of ultrasound-guided radial arterial catheterization. BMC Anesthesiol. 2016;16(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kucuk A, Yuce HH, Yalcin F, Boyacı FN, Yıldız S, Yalcin S. Forty-five degree wrist angulation is optimal for ultrasound guided long axis radial artery cannulation in patients over 60 years old: a randomized study. J Clin Monit Comput. 2014;28(6):567–72.

    Article  PubMed  Google Scholar 

  83. Melhuish TM, White LD. Optimal wrist positioning for radial arterial cannulation in adults: a systematic review and meta-analysis. Am J Emerg Med. 2016;34(12):2372–8.

    Article  PubMed  Google Scholar 

  84. Aydoğan H, Kucuk A, Boyacı FN, Yuce HH, Yalcin F, Altay N, Aydın MS, Buyukfırat E, Yalcin S. Optimal wrist position for long and short axis ultrasound guided radial artery cannulation. Clin Ter. 2013;164(4):e253–7.

    PubMed  Google Scholar 

  85. Abdalla UEM, Elmaadawey A, Kandeel A. Oblique approach for ultrasound-guided radial artery catheterization vs transverse and longitudinal approaches, a randomized trial. J Clin Anesth. 2017;36:98–101.

    Article  PubMed  Google Scholar 

  86. Sethi S, Maitra S, Saini V, Samra T, Malhotra SK. Comparison of short-axis out-of-plane versus long-axis in-plane ultrasound-guided radial arterial cannulation in adult patients: a randomized controlled trial. J Anesth. 2017;31(1):89–94.

    Article  PubMed  Google Scholar 

  87. Berk D, Gurkan Y, Kus A, Ulugol H, Solak M, Toker K. Ultrasound-guided radial arterial cannulation: long axis/in-plane versus short axis/out-of-plane approaches? J Clin Monit Comput. 2013;27(3):319–24.

    Article  PubMed  Google Scholar 

  88. Quan Z, Tian M, Chi P, Cao Y, Li X, Peng K. Modified short-axis out-of-plane ultrasound versus conventional long-axis in-plane ultrasound to guide radial artery cannulation: a randomized controlled trial. Anesth Analg. 2014;119(1):163–9.

    Article  PubMed  Google Scholar 

  89. Wang HH, Wang JJ, Chen WT. Ultrasound-guided short-axis out-of-plane vs. long-axis in-plane technique for radial artery catheterization: an updated meta-analysis of randomized controlled trials. Eur Rev Med Pharmacol Sci. 2022;26(6):1914–22.

    PubMed  Google Scholar 

  90. Breschan C, Graf G, Jost R, Stettner H, Feigl G, Goessler A, Neuwersch S, Koestenberger M, Likar R. Ultrasound-guided supraclavicular cannulation of the right brachiocephalic vein in small infants: a consecutive, prospective case series. Paediatr Anaesth. 2015;25(9):943–9.

    Article  PubMed  Google Scholar 

  91. Huang HP, Zhao WJ, Wen F, Li XY. Application of ultrasound-guided radial artery cannulation in paediatric patients: a systematic review and meta-analysis. Aust Crit Care. 2021;34(4):388–94.

    Article  PubMed  Google Scholar 

  92. Rashid MK, Sahami N, Singh K, Winter J, Sheth T, Jolly SS. Ultrasound guidance in femoral artery catheterization: a systematic review and a meta-analysis of randomized controlled trials. J Invasive Cardiol. 2019;31(7):E192–8.

    PubMed  Google Scholar 

  93. Sorrentino S, Nguyen P, Salerno N, Polimeni A, Sabatino J, Makris A, Hennessy A, Giustino G, Spaccarotella C, Mongiardo A, De Rosa S, Juergens C, Indolfi C. Standard versus ultrasound-guided cannulation of the femoral artery in patients undergoing invasive procedures: a meta-analysis of randomized controlled trials. J Clin Med. 2020;9(3):677.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li J, Fan YY, Xin MZ, Yan J, Hu W, Huang WH, Lin XL, Qin HY. A randomised, controlled trial comparing the long-term effects of peripherally inserted central catheter placement in chemotherapy patients using B-mode ultrasound with modified Seldinger technique versus blind puncture. Eur J Oncol Nurs. 2014;18(1):94–103.

    Article  PubMed  Google Scholar 

  95. Oleti T, Jeeva Sankar M, Thukral A, Sreenivas V, Gupta AK, Agarwal R, Deorari AK, Paul VK. Does ultrasound guidance for peripherally inserted central catheter (PICC) insertion reduce the incidence of tip malposition? - a randomized trial. J Perinatol. 2019;39(1):95–101.

    Article  PubMed  Google Scholar 

  96. Buetti N, Ruckly S, Lucet JC, Bouadma L, Schwebel C, Mimoz O, Timsit JF. Ultrasound guidance and risk for intravascular catheter-related infections among peripheral arterial catheters: a post-hoc analysis of two large randomized-controlled trials. Ann Intensive Care. 2020;10(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Buetti N, Mimoz O, Mermel L, Ruckly S, Mongardon N, Dupuis C, Mira JP, Lucet JC, Mégarbane B, Bailly S, Parienti JJ, Timsit JF. Ultrasound guidance and risk for central venous catheter-related infections in the intensive care unit: a post hoc analysis of individual data of 3 multicenter randomized trials. Clin Infect Dis. 2021;73(5):e1054–61.

    Article  PubMed  Google Scholar 

  98. Tokumine J, Matsushima H, Lefor AK, Igarashi H, Ono K. Ultrasound-guided subclavian venipuncture is more rapidly learned than the anatomic landmark technique in simulation training. J Vasc Access. 2015;16(2):144–7.

    Article  PubMed  Google Scholar 

  99. Maizel J, Guyomarc’h L, Henon P, Modeliar SS, de Cagny B, Choukroun G, Slama M. Residents learning ultrasound-guided catheterization are not sufficiently skilled to use landmarks. Crit Care. 2014;18(1):R36.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moureau N, Lamperti M, Kelly LJ, Dawson R, Elbarbary M, van Boxtel AJ, Pittiruti M. Evidence-based consensus on the insertion of central venous access devices: definition of minimal requirements for training. Br J Anaesth. 2013;110:347–56.

    Article  CAS  PubMed  Google Scholar 

  101. Feller-Kopman D. Ultrasound guided internal jugular access: a proposed standardized approach and implications for training and practice. Chest. 2007;132:302–9.

    Article  PubMed  Google Scholar 

  102. Royal College of Radiologists RCR Board of the Faculty of Clinical Radiology. Ultrasound training recommendations for medical and surgical specialties. RCR. 2004. p 1–56. http://www.rcr.ac.uk/docs/radiology/pdf/ultrasound.pdf.

  103. Blick C, Vinograd A, Chung J, Nguyen E, Abbadessa MKF, Gaines S, Chen A. Procedural competency for ultrasound-guided peripheral intravenous catheter insertion for nurses in a pediatric emergency department. J Vasc Access. 2021;22(2):232–7.

    Article  PubMed  Google Scholar 

  104. Edwards C, Jones J. Development and implementation of an ultrasound-guided peripheral intravenous catheter program for emergency nurses. J Emerg Nurs. 2018;44(1):33–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Slama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slama, M., Zerbib, Y., Brault, C., Maizel, J. (2023). Ultrasound-Guided Cannulation. In: Robba, C., Messina, A., Wong, A., Vieillard-Baron, A. (eds) Basic Ultrasound Skills “Head to Toe” for General Intensivists. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-031-32462-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32462-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32461-1

  • Online ISBN: 978-3-031-32462-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics