Skip to main content

Management of the Vascularized Cornea Before Corneal Graft Surgery: Fine-Needle Diathermy and Inhibition of VEGF

  • Chapter
  • First Online:
Modern Keratoplasty

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 135 Accesses

Abstract

Corneal neovascularization (CNV) is a pathological process that happens as a response to different stimuli, which impairs in many ways the transparency, refractive and immunologic health of the cornea. Notably, it appears as an accelerator and instigator of graft rejection prior to corneal transplantation, namely on penetrating keratoplasties (PK) and the ophthalmologist should identify it and treat it prior to surgery to prolong graft survival. In this chapter, we review the epidemiology, risk factors and pathophysiology of corneal neovascularization, as well as its impact on subsequent PK survival among other types of corneal transplantation. We specifically elucidate different medical and surgical therapies for managing corneal neovascularization prior to PK with the use of fine-needle diathermy, laser therapy and anti-VEGF agents. Novel procedures incorporating anti-VEGF use such as scleral lens devices are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta D, Illingworth C. Treatments for corneal neovascularization: a review. Cornea. 2011;30(8):927–38.

    Article  PubMed  Google Scholar 

  2. Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv Ophthalmol. 1998;43(3):245–69.

    Article  CAS  PubMed  Google Scholar 

  3. Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol. 2001;12(4):242–9.

    Article  CAS  PubMed  Google Scholar 

  4. Cursiefen C, Küchle M, Naumann GO. Angiogenesis in corneal diseases: histopathologic evaluation of 254 human corneal buttons with neovascularization. Cornea. 1998;17(6):611–3.

    Article  CAS  PubMed  Google Scholar 

  5. Mayer DJ, Casey TA. Reducing the risk of corneal graft rejection. A comparison of different methods. Cornea. 1987;6(4):261–8.

    Article  CAS  PubMed  Google Scholar 

  6. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol. 1992;110(10):1392–403.

    Google Scholar 

  7. Dana MR, Schaumberg DA, Kowal VO, Goren MB, Rapuano CJ, Laibson PR, et al. Corneal neovascularization after penetrating keratoplasty. Cornea. 1995;14(6):604–9.

    Article  CAS  PubMed  Google Scholar 

  8. Maguire MG, Stark WJ, Gottsch JD, Stulting RD, Sugar A, Fink NE, et al. Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Collaborative Corneal Transplantation Studies Research Group. Ophthalmology. 1994;101(9):1536–47.

    Article  CAS  PubMed  Google Scholar 

  9. Vail A, Gore SM, Bradley BA, Easty DL, Rogers CA. Corneal graft survival and visual outcome. A multicenter study. Corneal Transplant Follow-up Study Collaborators. Ophthalmology. 1994;101(1):120–7.

    Article  CAS  PubMed  Google Scholar 

  10. Jabbehdari S, Rafii AB, Yazdanpanah G, Hamrah P, Holland EJ, Djalilian AR. Update on the management of high-risk penetrating keratoplasty. Curr Ophthalmol Rep. 2017;5(1):38–48.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Soifer M, Mousa HM, Stinnett SS, Galor A, Perez VL. Matrix metalloproteinase 9 positivity predicts long term decreased tear production. Ocul Surf. 2021;19:270–4.

    Article  PubMed  Google Scholar 

  12. Soifer M, Mousa HM, Levy RB, Perez VL. Understanding immune responses to surgical transplant procedures in Stevens Johnsons Syndrome Patients. Front Med. 2021;8:656998. https://www.frontiersin.org/article/10.3389/fmed.2021.656998.

    Article  Google Scholar 

  13. Pillai CT, Dua HS, Hossain P. Fine needle diathermy occlusion of corneal vessels. Invest Ophthalmol Vis Sci. 2000;41(8):2148–53.

    CAS  PubMed  Google Scholar 

  14. Kirwan RP, Zheng Y, Tey A, Anijeet D, Sueke H, Kaye SB. Quantifying changes in corneal neovascularization using fluorescein and indocyanine green angiography. Am J Ophthalmol. 2012;154(5):850–858.e2.

    Article  PubMed  Google Scholar 

  15. Junghans BM, Collin HB. The limbal vascular response to corneal injury. An autoradiographic study. Cornea. 1989;8(2):141–9.

    Article  CAS  PubMed  Google Scholar 

  16. Feizi S, Azari AA, Safapour S. Therapeutic approaches for corneal neovascularization. Eye Vis Lond Engl. 2017;4:28.

    Article  Google Scholar 

  17. Faraj LA, Elalfy MS, Said DG, Dua HS. Fine needle diathermy occlusion of corneal vessels. Br J Ophthalmol. 2014;98(9):1287–90.

    Article  PubMed  Google Scholar 

  18. Romano V, Steger B, Kaye SB. Fine-needle diathermy guided by angiography. Cornea. 2015;34(9):e29–30.

    Article  PubMed  Google Scholar 

  19. Spiteri N, Romano V, Zheng Y, Yadav S, Dwivedi R, Chen J, et al. Corneal angiography for guiding and evaluating fine-needle diathermy treatment of corneal neovascularization. Ophthalmology. 2015;122(6):1079–84.

    Article  PubMed  Google Scholar 

  20. Wertheim MS, Cook SD, Knox-Cartwright NE, Van DL, Tole DM. Electrolysis-needle cauterization of corneal vessels in patients with lipid keratopathy. Cornea. 2007;26(2):230–1.

    Article  PubMed  Google Scholar 

  21. Parsa CF, Temprano J, Wilson D, Green WR. Hemorrhage complicating YAG laser feeder vessel coagulation of cornea vascularization. Cornea. 1994;13(3):264–8.

    Article  CAS  PubMed  Google Scholar 

  22. Baer JC, Foster CS. Corneal laser photocoagulation for treatment of neovascularization. Efficacy of 577 nm yellow dye laser. Ophthalmology. 1992;99(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  23. Marsh RJ. Argon laser treatment of lipid keratopathy. Br J Ophthalmol. 1988;72(12):900–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amano S, Rohan R, Kuroki M, Tolentino M, Adamis AP. Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci. 1998;39(1):18–22.

    CAS  PubMed  Google Scholar 

  25. Andreoli CM, Miller JW. Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol. 2007;18(6):502–8.

    Article  PubMed  Google Scholar 

  26. Cursiefen C, Rummelt C, Küchle M. Immunohistochemical localization of vascular endothelial growth factor, transforming growth factor alpha, and transforming growth factor beta1 in human corneas with neovascularization. Cornea. 2000;19(4):526–33.

    Article  CAS  PubMed  Google Scholar 

  27. Gan L, Fagerholm P, Palmblad J. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in the regulation of corneal neovascularization and wound healing. Acta Ophthalmol Scand. 2004;82(5):557–63.

    Article  CAS  PubMed  Google Scholar 

  28. Hosseini H, Nejabat M, Mehryar M, Yazdchi T, Sedaghat A, Noori F. Bevacizumab inhibits corneal neovascularization in an alkali burn induced model of corneal angiogenesis. Clin Exp Ophthalmol. 2007;35(8):745–8.

    Article  PubMed  Google Scholar 

  29. Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY, et al. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol. 2004;165(6):2177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci. 2000;41(9):2514–22.

    CAS  PubMed  Google Scholar 

  31. Heier JS, Antoszyk AN, Pavan PR, Leff SR, Rosenfeld PJ, Ciulla TA, et al. Ranibizumab for treatment of neovascular age-related macular degeneration: a phase I/II multicenter, controlled, multidose study. Ophthalmology. 2006;113(4):633.e1–4.

    Article  PubMed  Google Scholar 

  32. Cursiefen C, Cao J, Chen L, Liu Y, Maruyama K, Jackson D, et al. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci. 2004;45(8):2666–73.

    Article  PubMed  Google Scholar 

  33. Yatoh S, Kawakami Y, Imai M, Kozawa T, Segawa T, Suzuki H, et al. Effect of a topically applied neutralizing antibody against vascular endothelial growth factor on corneal allograft rejection of rat. Transplantation. 1998;66(11):1519–24.

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigues EB, Farah ME, Maia M, Penha FM, Regatieri C, Melo GB, et al. Therapeutic monoclonal antibodies in ophthalmology. Prog Retin Eye Res. 2009;28(2):117–44.

    Article  CAS  PubMed  Google Scholar 

  35. Mackenzie SE, Tucker WR, Poole TRG. Bevacizumab (avastin) for corneal neovascularization--corneal light shield soaked application. Cornea. 2009;28(2):246–7.

    Article  PubMed  Google Scholar 

  36. Gerten G. Bevacizumab (avastin) and argon laser to treat neovascularization in corneal transplant surgery. Cornea. 2008;27(10):1195–9.

    Article  PubMed  Google Scholar 

  37. DeStafeno JJ, Kim T. Topical bevacizumab therapy for corneal neovascularization. Arch Ophthalmol. 2007;125(6):834–6.

    Article  PubMed  Google Scholar 

  38. Awadein A. Subconjunctival bevacizumab for vascularized rejected corneal grafts. J Cataract Refract Surg. 2007;33(11):1991–3.

    Article  PubMed  Google Scholar 

  39. Bock F, König Y, Kruse F, Baier M, Cursiefen C. Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2008;246(2):281–4.

    Article  CAS  PubMed  Google Scholar 

  40. Dastjerdi MH, Al-Arfaj KM, Nallasamy N, Hamrah P, Jurkunas UV, Pineda R, et al. Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study. Arch Ophthalmol. 2009;127(4):381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doctor PP, Bhat PV, Foster CS. Subconjunctival bevacizumab for corneal neovascularization. Cornea. 2008;27(9):992–5.

    Article  PubMed  Google Scholar 

  42. Manzano RPA, Peyman GA, Khan P, Carvounis PE, Kivilcim M, Ren M, et al. Inhibition of experimental corneal neovascularisation by bevacizumab (Avastin). Br J Ophthalmol. 2007;91(6):804–7.

    Article  PubMed  Google Scholar 

  43. Bachmann BO, Bock F, Wiegand SJ, Maruyama K, Dana MR, Kruse FE, et al. Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Arch Ophthalmol. 2008;126(1):71–7.

    Article  PubMed  Google Scholar 

  44. Habot-Wilner Z, Barequet IS, Ivanir Y, Moisseiev J, Rosner M. The inhibitory effect of different concentrations of topical bevacizumab on corneal neovascularization. Acta Ophthalmol. 2010;88(8):862–7.

    Article  CAS  PubMed  Google Scholar 

  45. Han YS, Lee JE, Jung JW, Lee JS. Inhibitory effects of bevacizumab on angiogenesis and corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009;247(4):541–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kim TI, Kim SW, Kim S, Kim T, Kim EK. Inhibition of experimental corneal neovascularization by using subconjunctival injection of bevacizumab (Avastin). Cornea. 2008;27(3):349–52.

    Article  PubMed  Google Scholar 

  47. Cursiefen C, Hofmann-Rummelt C, Küchle M, Schlötzer-Schrehardt U. Pericyte recruitment in human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J Ophthalmol. 2003;87(1):101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. You IC, Kang IS, Lee SH, Yoon KC. Therapeutic effect of subconjunctival injection of bevacizumab in the treatment of corneal neovascularization. Acta Ophthalmol. 2009;87(6):653–8.

    Article  CAS  PubMed  Google Scholar 

  49. Jo N, Mailhos C, Ju M, Cheung E, Bradley J, Nishijima K, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol. 2006;168(6):2036–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ferrari G, Dastjerdi MH, Okanobo A, Cheng SF, Amparo F, Nallasamy N, et al. Topical ranibizumab as a treatment of corneal neovascularization. Cornea. 2013;32(7):992–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin CT, Hu FR, Kuo KT, Chen YM, Chu HS, Lin YH, et al. The different effects of early and late bevacizumab (Avastin) injection on inhibiting corneal neovascularization and conjunctivalization in rabbit limbal insufficiency. Invest Ophthalmol Vis Sci. 2010;51(12):6277–85.

    Article  PubMed  Google Scholar 

  52. Avisar I, Weinberger D, Kremer I. Effect of subconjunctival and intraocular bevacizumab injections on corneal neovascularization in a mouse model. Curr Eye Res. 2010;35(2):108–15.

    Article  CAS  PubMed  Google Scholar 

  53. Lee SH, Leem HS, Jeong SM, Lee K. Bevacizumab accelerates corneal wound healing by inhibiting TGF-beta2 expression in alkali-burned mouse cornea. BMB Rep. 2009;42(12):800–5.

    Article  CAS  PubMed  Google Scholar 

  54. Ozdemir O, Altintas O, Altintas L, Ozkan B, Akdag C, Yüksel N. Comparison of the effects of subconjunctival and topical anti-VEGF therapy (bevacizumab) on experimental corneal neovascularization. Arq Bras Oftalmol. 2014;77(4):209–13.

    Article  PubMed  Google Scholar 

  55. Mohammadpour M. Deep intrastromal injection of bevacizumab for the management of corneal neovascularization. Cornea. 2013;32(1):109–10.

    Article  PubMed  Google Scholar 

  56. Kim T-i, Chung JL, Hong JP, Min K, Seo KY, Kim EK. Bevacizumab application delays epithelial healing in rabbit cornea. Invest Ophthalmol Vis Sci. 2009;50(10):4653–9.

    Article  PubMed  Google Scholar 

  57. Koenig Y, Bock F, Horn F, Kruse F, Straub K, Cursiefen C. Short- and long-term safety profile and efficacy of topical bevacizumab (Avastin) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2009;247(10):1375–82.

    Article  CAS  PubMed  Google Scholar 

  58. Kim SW, Ha BJ, Kim EK, Tchah H, Kim T-i. The effect of topical bevacizumab on corneal neovascularization. Ophthalmology. 2008;115(6):e33–8.

    Article  PubMed  Google Scholar 

  59. Murata M, Takanami T, Shimizu S, Kubota Y, Horiuchi S, Habano W, et al. Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF). Curr Eye Res. 2006;31(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  60. Carrasco MA. Subconjunctival bevacizumab for corneal neovascularization in herpetic stromal keratitis. Cornea. 2008;27(6):743–5.

    Article  PubMed  Google Scholar 

  61. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tranos P, Vacalis A, Asteriadis S, Koukoula S, Vachtsevanos A, Perganta G, et al. Resistance to antivascular endothelial growth factor treatment in age-related macular degeneration. Drug Des Dev Ther. 2013;7:485–90.

    Google Scholar 

  64. Yin J, Jacobs DS. Long-term outcome of using Prosthetic Replacement of Ocular Surface Ecosystem (PROSE) as a drug delivery system for bevacizumab in the treatment of corneal neovascularization. Ocul Surf. 2019;17(1):134–41.

    Article  PubMed  Google Scholar 

  65. Lim M, Jacobs DS, Rosenthal P, Carrasquillo KG. The Boston Ocular Surface Prosthesis as a novel drug delivery system for bevacizumab. Semin Ophthalmol. 2009;24(3):149–55.

    Article  PubMed  Google Scholar 

Suggested Reading

  1. Perez VL. Corneal vessel cauterization. Durham: Duke Eye Center; 2022.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor L. Perez .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Cauterization of corneal stromal vessels during corneal transplantation surgery (MP4 14433 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azar, N.S., Soifer, M., Perez, V.L. (2023). Management of the Vascularized Cornea Before Corneal Graft Surgery: Fine-Needle Diathermy and Inhibition of VEGF. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics