Skip to main content

Descemet Membrane Transplantation

  • Chapter
  • First Online:
Modern Keratoplasty

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 127 Accesses

Abstract

The growing scarcity of cadaver-based tissue has made us examine alternative technologies. Fuchs’ Endothelial Corneal Dystrophy (FECD) is the leading indication for corneal transplantation. In early FECD, the disease is confined to the central cornea, with the paracentral endothelial cells remaining unaffected. Our previous in vitro/in vivo work has shown that endothelial cell migration was faster on a bare Descemet membrane (DM) than on a bare stroma. Here, we describe a series of patients who have undergone this technique. The surgery involves the stripping of the central 5–5.5 mm guttata and then replacing this defect with a bare DM. The new acellular DM adheres to the stroma using a gas bubble in the anterior chamber. Subsequent endothelial migration from the paracentral cornea will improve central endothelial function. Successful migration is seen in 6 weeks. Rocki supplementation is required in older patients. The key advantages are the lack of need for long steroids and the ability to use non-EK grade tissue, hence increasing tissue utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonanno JA. Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res. 2012;95:2–7. https://doi.org/10.1016/j.exer.2011.06.004.

    Article  CAS  Google Scholar 

  2. Edelhauser HF. The balance between corneal transparency and edema: the proctor lecture. Invest Ophthalmol Vis Sci. 2006;47:1754–67. https://doi.org/10.1167/iovs.05-1139.

    Article  Google Scholar 

  3. Tuft SJ, Coster DJ. The corneal endothelium. Eye. 1990;4(Pt 3):389–424. https://doi.org/10.1038/eye.1990.53.

    Article  Google Scholar 

  4. McCartney MD, Wood TO, McLaughlin BJ. Freeze-fracture label of functional and dysfunctional human corneal endothelium. Curr Eye Res. 1987;6:589–97.

    Article  CAS  Google Scholar 

  5. Mahdy MA, Eid MZ, Mohammed MA, Hafez A, Bhatia JR. elationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery. Clinical Ophthalmol. 2012;6:503–10. https://doi.org/10.2147/OPTH.S29865.

    Article  Google Scholar 

  6. Joyce NC, Meklir B, Joyce SJ, Zieske JD. Cell cycle protein expression and proliferative status in human corneal cells. Invest Ophthalmol Vis Sci. 1996;37:645–55.

    CAS  Google Scholar 

  7. Joyce NC, Navon SE, Roy S, Zieske JD. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ. Invest Ophthalmol Vis Sci. 1996;37:1566–75.

    CAS  Google Scholar 

  8. Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium, a quantitative histologic study. Investig Ophthalmol Vis Sci. 1984;25:312–22.

    CAS  Google Scholar 

  9. Edelhauser HF. The resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea. 2000;19:263–73.

    Article  CAS  Google Scholar 

  10. Australian Corneal Graft Registry, C. The Australian graft registry 2018 report. 2018. <https://dspace.flinders.edu.au/xmlui/bitstream/handle/2328/37917/ACGR%202018%20Report.pdf?sequence=3&isAllowed=y>.

  11. Ang M, Soh Y, Htoon HM, Mehta JS, Tan D. Five-year graft survival comparing Descemet stripping automated endothelial keratoplasty and penetrating keratoplasty. Ophthalmology. 2016;123:1646–52. https://doi.org/10.1016/j.ophtha.2016.04.049.

    Article  Google Scholar 

  12. Woo JH, Ang M, Htoon HM, Tan D. Descemet membrane endothelial keratoplasty versus Descemet stripping automated endothelial keratoplasty and penetrating Keratoplasty. Am J Ophthalmol. 2019;207:288–303. https://doi.org/10.1016/j.ajo.2019.06.012.

    Article  Google Scholar 

  13. Gain P, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134:167–73. https://doi.org/10.1001/jamaophthalmol.2015.4776.

    Article  Google Scholar 

  14. Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the cornea. Prog Retin Eye Res. 2022;87:101011. https://doi.org/10.1016/j.preteyeres.2021.101011.

    Article  Google Scholar 

  15. Okumura N, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50:3680–7. https://doi.org/10.1167/iovs.08-2634.

    Article  Google Scholar 

  16. Okumura N, et al. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2014;55:318–29. https://doi.org/10.1167/iovs.13-12225.

    Article  CAS  Google Scholar 

  17. Okumura N, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2013;54:2493–502. https://doi.org/10.1167/iovs.12-11320.

    Article  CAS  Google Scholar 

  18. Koizumi N, et al. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. Cornea. 2013;32:1167–70. https://doi.org/10.1097/ICO.0b013e318285475d.

    Article  Google Scholar 

  19. Syed ZA, Rapuano CJ. Rho kinase (ROCK) inhibitors in the management of corneal endothelial disease. Curr Opin Ophthalmol. 2021;32:268–74. https://doi.org/10.1097/ICU.0000000000000748.

    Article  Google Scholar 

  20. Ong HS, Ang M, Mehta J. Evolution of therapies for the corneal endothelium: past, present and future approaches. Br J Ophthalmol. 2021;105:454–67. https://doi.org/10.1136/bjophthalmol-2020-316149.

    Article  Google Scholar 

  21. Wollensak G, Green WR. Analysis of sex-mismatched human corneal transplants by fluorescence in situ hybridization of the sex-chromosomes. Exp Eye Res. 1999;68:341–6. https://doi.org/10.1006/exer.1998.0611.

    Article  CAS  Google Scholar 

  22. Coster DJ, Lowe MT, Keane MC, Williams KA. Australian corneal graft Registry, C. a comparison of lamellar and penetrating keratoplasty outcomes: a registry study. Ophthalmology. 2014;121:979–87. https://doi.org/10.1016/j.ophtha.2013.12.017.

    Article  Google Scholar 

  23. Kaufman AR, Nose RM, Pineda R 2nd. Descemetorhexis without endothelial keratoplasty (DWEK): proposal for nomenclature standardization. Cornea. 2018;37:e20–1. https://doi.org/10.1097/ICO.0000000000001528.

    Article  Google Scholar 

  24. Borkar DS, Veldman P, Colby KA. Treatment of fuchs endothelial dystrophy by descemet stripping without endothelial keratoplasty. Cornea. 2016;35:1267–73. https://doi.org/10.1097/ICO.0000000000000915.

    Article  Google Scholar 

  25. Soh YQ, Peh GS, Mehta JS. Evolving therapies for fuchs' endothelial dystrophy. Regen Med. 2018;13:97–115. https://doi.org/10.2217/rme-2017-0081.

    Article  CAS  Google Scholar 

  26. Artaechevarria Artieda J, Wells M, Devasahayam RN, Moloney G. 5-year outcomes of descemet stripping only in fuchs dystrophy. Cornea. 2020;38(8):1048. https://doi.org/10.1097/ICO.0000000000002270.

    Article  Google Scholar 

  27. Garcerant D, et al. Descemet's stripping without endothelial keratoplasty. Curr Opin Ophthalmol. 2019;30:275–85. https://doi.org/10.1097/ICU.0000000000000579.

    Article  Google Scholar 

  28. Macsai MS, Shiloach M. Use of topical rho kinase inhibitors in the treatment of fuchs dystrophy after descemet stripping only. Cornea. 2019;38:529–34. https://doi.org/10.1097/ICO.0000000000001883.

    Article  Google Scholar 

  29. Bhogal M, Lwin CN, Seah XY, Peh G, Mehta JS. Allogeneic descemet's membrane transplantation enhances corneal endothelial monolayer formation and restores functional integrity following descemet's stripping. Invest Ophthalmol Vis Sci. 2017;58:4249–60. https://doi.org/10.1167/iovs.17-22106.

    Article  CAS  Google Scholar 

  30. Soh YQ, et al. Predicative factors for corneal endothelial cell migration. Invest Ophthalmol Vis Sci. 2016;57:338–48. https://doi.org/10.1167/iovs.15-18300.

    Article  Google Scholar 

  31. Soh YQ, Mehta JS. Regenerative therapy for fuchs endothelial corneal dystrophy. Cornea. 2018;37:523–7. https://doi.org/10.1097/ICO.0000000000001518.

    Article  Google Scholar 

  32. Jullienne R, et al. Corneal endothelium self-healing mathematical model after inadvertent descemetorhexis. J Cataract Refract Surg. 2015;41:2313–8. https://doi.org/10.1016/j.jcrs.2015.10.043.

    Article  Google Scholar 

  33. Franceschino A, et al. Descemetorhexis without endothelial keratoplasty in fuchs endothelial corneal dystrophy: a systematic review and meta-analysis. Cornea. 2022;41:815–25. https://doi.org/10.1097/ICO.0000000000002855.

    Article  Google Scholar 

  34. Chen J, et al. Descemet's membrane supports corneal endothelial Cell regeneration in rabbits. Sci Rep. 2017;7:6983. https://doi.org/10.1038/s41598-017-07557-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Electronic Supplementary Material

Descemet’s Membrane Transplant (MP4 19884 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ong, H.S., Mehta, J.S. (2023). Descemet Membrane Transplantation. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics