Skip to main content

Corneal Endothelial Cell Transfer

  • Chapter
  • First Online:
Modern Keratoplasty

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 128 Accesses

Abstract

Today, different concepts of regenerative-medicine cell-based therapy are applied for the treatment of damaged tissue. Of those, one is the release of beneficial small molecules via the transfer of cultured cells to the damaged tissue to promote regeneration and reorganization of healthy tissue being functionally restored. The other involves “true replacement” of damaged cells via the transfer of cultured cells. The transfer of cultured human corneal endothelial cells (CECs) (cHCECs), termed “HCEC-injection therapy,” focuses on the latter regenerative-medicine cell-based therapy concept, in which the injection of cHCECs is used for the treatment of corneal endothelial dysfunction and failure. In cases undergoing HCEC-injection therapy, cHCECs, in combination with a Rho-associated protein kinase (ROCK) inhibitor used to promote adhesion of the injected cHCECs onto the posterior surface of the cornea, are surgically transferred into the anterior chamber for complete recovery of corneal transparency. In HCEC-injection therapy, the high proportion of mature-differentiated cHCECs, similar to that observed in in vivo CECs, allows for safe and effective clinical application with optimal postoperative outcomes. Clinical trials investigating the efficacy of HCEC-injection therapy for patients with various corneal endothelial disorders have been completed with favorable results, thus widening the pathway for novel regenerative-medicine-treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan DT, Dart JK, Holland EJ, Kinoshita S. Corneal transplantation. Lancet. 2012;379(9827):1749–61.

    Article  Google Scholar 

  2. Dana R. A new frontier in curing corneal blindness. N Engl J Med. 2018;378(11):1057–8.

    Article  Google Scholar 

  3. Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–9.

    Article  Google Scholar 

  4. Price MO, Calhoun P, Kollman C, Price FW Jr, Lass JH. Descemet stripping endothelial keratoplasty: ten-year endothelial cell loss compared with penetrating keratoplasty. Ophthalmology. 2016;123(7):1421–7.

    Article  Google Scholar 

  5. Lass JH, Benetz BA, Patel SV, et al. Donor, recipient, and operative factors associated with increased endothelial cell loss in the cornea preservation time study. JAMA Ophthalmol. 2019;137(2):185–93.

    Article  Google Scholar 

  6. Melles GR, Ong TS, Ververs B, van der Wees J. Preliminary clinical results of Descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2008;145(2):222–7.

    Article  Google Scholar 

  7. Tourtas T, Laaser K, Bachmann BO, Cursiefen C, Kruse FE. Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty. Am J Ophthalmol. 2012;153(6):1082–90.e2.

    Article  Google Scholar 

  8. Weinstein JE, Weiss JS. Descemet membrane and endothelial dystrophies. In: Mannis JM, Holland EJ, editors. Cornea. 4th ed. Philadelphia, PA: Elsevier; 2017. p. 800–17.

    Google Scholar 

  9. Macsai MS, Shiloach M. Use of topical rho kinase inhibitors in the treatment of Fuchs dystrophy after Descemet stripping only. Cornea. 2019;38(5):529–34.

    Article  Google Scholar 

  10. Moloney G, Garcerant Congote D, Hirnschall N, Arsiwalla T, Luiza Mylla Boso A, Toalster N, et al. Descemet stripping only supplemented with topical ripasudil for fuchs endothelial dystrophy 12-month outcomes of the sydney eye hospital study. Cornea. 2021;40(3):320–6.

    Article  Google Scholar 

  11. Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003.

    Article  CAS  Google Scholar 

  12. Numa K, Imai K, Ueno M, Kitazawa K, Tanaka H, Bush JD, et al. Five-year follow-up of first 11 patients undergoing injection of cultured corneal endothelial cells for corneal endothelial failure. Ophthalmology. 2021;128(4):504–14.

    Article  Google Scholar 

  13. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–73.

    Article  Google Scholar 

  14. Dawson DG, Ubels JL, Edelhauser HF. Cornea and sclera. In: Adler’s physiology of the eye. 11th ed. Philadelphia, PA: Elsevier; 2011. p. 96–104.

    Google Scholar 

  15. Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95(1):16–23.

    Article  CAS  Google Scholar 

  16. Matsuda M, Sawa M, Edelhauser HF, Bartels SP, Neufeld AH, Kenyon KR. Cellular migration and morphology in corneal endothelial wound repair. Invest Ophthalmol Vis Sci. 1985;26(4):443–9.

    CAS  Google Scholar 

  17. Ono T, Mori Y, Nejima R, Iwasaki T, Miyai T, Miyata K. Corneal endothelial cell density and morphology in ophthalmologically healthy young individuals in Japan: an observational study of 16842 eyes. Sci Rep. 2021;11(1):18224.

    Article  CAS  Google Scholar 

  18. Krachmer JH, Purcell JJ Jr, Young CW, Bucher KD. Corneal endothelial dystrophy. A study of 64 families. Arch Ophthalmol. 1978;96(11):2036–9.

    Article  CAS  Google Scholar 

  19. Miyake K, Matsuda M, Inaba M. Corneal endothelial changes in pseudoexfoliation syndrome. Am J Ophthalmol. 1989;108(1):49–52.

    Article  CAS  Google Scholar 

  20. Koizumi N, Yamasaki K, Kawasaki S, Sotozono C, Inatomi T, Mochida C, et al. Cytomegalovirus in aqueous humor from an eye with corneal endotheliitis. Am J Ophthalmol. 2006;141(3):564–5.

    Article  Google Scholar 

  21. Pollack IP. Current concepts in laser iridotomy. Int Ophthalmol Clin. 1984;24(3):153–80.

    CAS  Google Scholar 

  22. Ho JW, Afshari NA. Advances in cataract surgery: preserving the corneal endothelium. Curr Opin Ophthalmol. 2015;26(1):22–7.

    Article  Google Scholar 

  23. Realini T, Gupta PK, Radcliffe NM, Garg S, Wiley WF, Yeu E, et al. The effects of glaucoma and glaucoma therapies on corneal endothelial cell density. J Glaucoma. 2021;30(3):209–18.

    Article  Google Scholar 

  24. Matsuda M, Tano Y, Inaba M, Manabe R. Corneal endothelial cell damage associated with intraocular gas tamponade during pars plana vitrectomy. Jpn J Ophthalmol. 1986;30(3):324–9.

    CAS  Google Scholar 

  25. Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med. 2014;20(8):857–69.

    Article  CAS  Google Scholar 

  26. Yamaguchi T, Higa K, Suzuki T, Nakayama N, Yagi-Yaguchi Y, Dogru M, et al. Elevated cytokine levels in the aqueous humor of eyes with bullous Keratopathy and low endothelial cell density. Invest Ophthalmol Vis Sci. 2016;57(14):5954–62.

    Article  CAS  Google Scholar 

  27. Kinoshita S, Ueno M. Cultivated cells in the treatment of corneal diseases. In: Colby K, Dana R, editors. Foundations of corneal disease. Springer: Cham; 2020. p. 215–24.

    Chapter  Google Scholar 

  28. Ueno M, Toda M, Numa K, Tanaka H, Imai K, Bush J, et al. Superiority of mature differentiated cultured human corneal endothelial cell injection therapy for corneal endothelial failure. Am J Ophthalmol. 2021;237:267–77.

    Article  Google Scholar 

  29. Ueno M, Asada K, Toda M, Schlötzer-Schrehardt U, Nagata K, Montoya M, et al. Gene signature-based development of elisa assays for reproducible qualification of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(10):4295–305.

    Article  CAS  Google Scholar 

  30. Hamuro J, Ueno M, Toda M, Sotozono C, Montoya M, Kinoshita S. Cultured human corneal endothelial cell aneuploidy dependence on the presence of heterogeneous subpopulations with distinct differentiation phenotypes. Invest Ophthalmol Vis Sci. 2016;57(10):4385–92.

    Article  CAS  Google Scholar 

  31. Ueno M, Asada K, Toda M, Nagata K, Sotozono C, Kosaka N, et al. Concomitant evaluation of a panel of exosome proteins and mirs for qualification of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(10):4393–402.

    Article  CAS  Google Scholar 

  32. Hamuro J, Ueno M, Asada K, Toda M, Montoya M, Sotozono C, et al. Metabolic plasticity in cell state homeostasis and differentiation of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(10):4452–63.

    Article  CAS  Google Scholar 

  33. Toda M, Ueno M, Yamada J, Hiraga A, Tanaka H, Schlötzer-Schrehardt U, et al. The different binding properties of cultured human corneal endothelial cell subpopulations to Descemet’s membrane components. Invest Ophthalmol Vis Sci. 2016;57(11):4599–605.

    Article  CAS  Google Scholar 

  34. Hamuro J, Toda M, Asada K, Hiraga A, Schlötzer-Schrehardt U, Montoya M, et al. Cell homogeneity indispensable for regenerative medicine by cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(11):4749–61.

    Article  CAS  Google Scholar 

  35. Ueno M, Asada K, Toda M, Hiraga A, Montoya M, Sotozono C, et al. MicroRNA profiles qualify phenotypic features of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(13):5509–17.

    Article  CAS  Google Scholar 

  36. Toda M, Ueno M, Hiraga A, Asada K, Montoya M, Sotozono C, et al. Production of homogeneous cultured human corneal endothelial cells indispensable for innovative cell therapy. Invest Ophthalmol Vis Sci. 2017;58(4):2011–20.

    Article  CAS  Google Scholar 

  37. Yamamoto A, Tanaka H, Toda M, Sotozono C, Hamuro J, Kinoshita S, et al. A physical biomarker of the quality of cultured corneal endothelial cells and of the long-term prognosis of corneal restoration in patients. Nat Biomed Eng. 2019;3(12):953–60.

    Article  CAS  Google Scholar 

  38. Hamuro J, Numa K, Fujita T, Toda M, Ueda K, Tokuda Y, et al. Metabolites interrogation in cell fate decision of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2020;61(2):10.

    Article  Google Scholar 

  39. Hamuro J, Deguchi H, Fujita T, Ueda K, Tokuda Y, Hiramoto N, et al. Polarized expression of ion channels and solute carrier family transporters on heterogeneous cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2020;61(5):47.

    Article  CAS  Google Scholar 

  40. Numa K, Ueno M, Fujita T, Ueda K, Hiramoto N, Mukai A, et al. Mitochondria as a platform for dictating the cell fate of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2020;61(14):10.

    Article  CAS  Google Scholar 

  41. Toda M, Yukawa H, Yamada J, Ueno M, Kinoshita S, Baba Y, et al. In vivo fluorescence visualization of anterior chamber injected human corneal endothelial cells labeled with quantum dots. Invest Ophthalmol Vis Sci. 2019;60(12):4008–20.

    Article  CAS  Google Scholar 

  42. Vickers LA, Foulks GN, Gupta PK. Diagnosis and management of corneal allograft rejection. In: Cornea. 4th ed. Philadelphia, PA: Elsevier; 2011. p. 1687–96.

    Google Scholar 

  43. Lee WB, Jacobs DS, Musch DC, Kaufman SC, Reinhart WJ, Shtein RM. Descemet’s stripping endothelial keratoplasty: safety and outcomes: a report by the American academy of ophthalmology. Ophthalmology. 2009;116(9):1818–30.

    Article  Google Scholar 

  44. Deng SX, Lee WB, Hammersmith KM, Kuo AN, Li JY, Shen JF, et al. Descemet membrane endothelial keratoplasty: safety and outcomes: a report by the American academy of ophthalmology. Ophthalmology. 2018;125(2):295–310.

    Article  Google Scholar 

  45. Yamada J, Ueno M, Toda M, Shinomiya K, Sotozono C, Kinoshita S, et al. Allogeneic sensitization and tolerance induction after corneal endothelial cell transplantation in mice. Invest Ophthalmol Vis Sci. 2016;57(11):4572–80.

    Article  CAS  Google Scholar 

  46. Niederkorn JY. Immune privilege and immune regulation in the eye. Adv Immunol. 1990;48:191–226.

    Article  CAS  Google Scholar 

  47. Streilein JW. Immune regulation and the eye: a dangerous compromise. FASEB J. 1987;1:199–208.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Electronic Supplementary Material

Cultured hCEC-injection therapy [12] (MP4 25363 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kinoshita, S., Ueno, M., Sotozono, C. (2023). Corneal Endothelial Cell Transfer. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics