Skip to main content

Regenerative Surgery of the Corneal Stroma for Advanced Keratoconus

  • Chapter
  • First Online:
Modern Keratoplasty

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 134 Accesses

Abstract

Cellular therapy of the corneal stroma, with either ocular or extraocular stem cells, has been gaining a lot of interest over the last decade. Multiple studies are showing its potential benefits concerning its capacity to alleviate corneal scars, improve corneal transparency, generate new organized collagen within the corneal host stroma, and its immunosuppressive and immunomodulatory properties. Autologous extraocular stem cells do not require a healthy contralateral eye and they do not involve any ophthalmic procedures for their isolation. Mesenchymal stem cells (MSCs) have been the most widely assessed and have a high potential to differentiate into functional adult keratocytes in vivo and in vitro. While embryonic stem cells have been partially abandoned due to ethical issues. The induced pluripotent stem cells have opened a new and very promising field for future research, they are obtained from adult differentiated cells, and possess the capacity to theoretically differentiate into any cell type.

Our group carried out the first clinical trial in this regard in 14 patients with advanced keratoconus. The selected patients were divided into 3 experimental groups. Group-1 (G-1) patients underwent implantation of adipose-derived adult stem cells (ADASCs) alone. Group-2 (G-2) patients received a decellularized human donor corneal stroma lamina (120 μm of thickness). Group-3 (G-3) patients received implantation of an ADASCs-recellularized human corneal stroma lamina. ADASCs were previously obtained by elective liposuction. Implantation was performed into a femtosecond-assisted 9.5-mm diameter lamellar pocket, under topical anesthesia. Follow-up data of 36 months was obtained, with any case showing adverse reactions such as infection, haze, or allogeneic graft rejection.

Advanced stem cell therapy with implantation of autologous ADASCs with or without decellularized human corneal stroma showed good preliminary results for the treatment of advanced keratoconus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alio J. In: Alió JL, editor. Keratoconus: recent advances in diagnosis and treatment. Cham: Springer; 2017.

    Chapter  Google Scholar 

  2. Hashemi H, Heydarian S, Hooshmand E, Saatchi M, Yekta A, Aghamirsalim M, et al. The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea. 2020;39(2):263–70.

    Article  Google Scholar 

  3. Arnalich-Montiel F, Alió Del Barrio J, Alió J. Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis (Lond). 2016;3:2.

    Article  Google Scholar 

  4. De Miguel MP, Casaroli-Marano RP, Nieto-Nicolau N, Martínez-Conesa EM, Alió del Barrio JL, Alió JL, et al. Frontiers in regenerative medicine for cornea and ocular surface. In: Rahman A, Anjum S, editors. Frontiers in stem cell and regenerative medicine research. 1st ed. Sharjah: Bentham Publisher; 2015. p. 92–138.

    Chapter  Google Scholar 

  5. Carlson EC, Liu C-Y, Chikama T, Hayashia Y, Kao CW-C, Birk DE, et al. Keratocan, a cornea-specific keratan sulfate proteoglycan, is regulated by lumican. J Biol Chem. 2005;280:25541–7.

    Article  CAS  Google Scholar 

  6. Du Y, Funderburgh M, Mann M, Sundar Raj N, Funderburgh J. Multipotent stem cells in human corneal stroma. Stem Cells. 2005;23(9):1266–75.

    Article  Google Scholar 

  7. Ku J, Niederer R, Patel D, Sherwin T, McGhee C. Laser scanning in vivo confocal analysis of keratocyte density in keratoconus. Ophthalmology. 2008;115(5):845–50.

    Article  Google Scholar 

  8. Piñero DP, Alió JL, Barraquer RI, Michael R, Jiménez R. Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest Ophthalmol Vis Sci. 2010;51:1948–55.

    Article  Google Scholar 

  9. Alió J, Piñero D, Alesón A, Teus M, Barraquer R, Murta J, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg. 2011;37(3):552–68.

    Article  Google Scholar 

  10. Mastropasqua L, Nubile M. Normal corneal morphology. In: Mastropasqua L, Nubile M, editors. Confocal microscopy of the cornea. Thorofare, NJ: SLACK; 2002. p. 7–16.

    Google Scholar 

  11. Ali Javadi M, Kanavi M, Mahdavi M, Yaseri M, Rabiei H, Javadi A, et al. Comparison of keratocyte density between keratoconus, post-laser in situ keratomileusis keratectasia, and uncomplicated post-laser in situ keratomileusis cases. A confocal scan study. Cornea. 2009;28(7):774–9.

    Article  Google Scholar 

  12. Edmund C. Assessment of an elastic model in the pathogenesis of keratoconus. Acta Ophthalmol. 1987;65(5):545–50.

    Article  CAS  Google Scholar 

  13. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–73.

    Article  Google Scholar 

  14. Griffith M, Alarcon EI, Brunette I. Regenerative approaches for the cornea. J Intern Med. 2016;280(3):276–86.

    Article  CAS  Google Scholar 

  15. Fagerholm P, Lagali N, Merrett K, Jackson W, Munger R, Liu Y, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2(46):46ra61.

    Article  Google Scholar 

  16. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res. 2018;173:188–93.

    Article  CAS  Google Scholar 

  17. Ruberti J, Zieske J. Prelude to corneal tissue engineering—gaining control of collagen organization. Prog Retin Eye Res. 2008;27(5):549–77.

    Article  CAS  Google Scholar 

  18. Alió del Barrio J, Chiesa M, Ferrer GG, Garagorri N, Briz N, Fernandez-Delgado J, et al. Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. J Biomed Mater Res A. 2015;103(3):1106–18.

    Article  Google Scholar 

  19. Lynch A, Ahearne M. Strategies for developing decellularized corneal scaffolds. Exp Eye Res. 2013;108:42–7.

    Article  CAS  Google Scholar 

  20. Alio del Barrio J, Chiesa M, Garagorri N, Garcia-Urquia N, Fernandez-Delgado J, Bataille L, et al. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Exp Eye Res. 2015;132:91–100.

    Article  CAS  Google Scholar 

  21. Hara H, Cooper DKC. Xenotransplantation—the future of corneal transplantation? Cornea. 2011;30(4):371–8.

    Article  Google Scholar 

  22. Arnalich-Montiel F, Pastor S, Blazquez-Martinez A, Fernandez-Delgado J, Nistal M, Alio J, De Miguel M. Adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells. 2008;26(2):570–9.

    Article  CAS  Google Scholar 

  23. Espandar L, Bunnell B, Wang G, Gregory P, McBride C, Moshirfar M. Adipose-derived stem cells on hyaluronic acid-derived scaffold: a new horizon in bioengineered cornea. Arch Ophthalmol. 2012;130(2):202–8.

    Article  CAS  Google Scholar 

  24. Mittal SK, Omoto M, Amouzegar A, Sahu A, Alexandra R, Katikireddy KR, et al. Restoration of corneal transparency by mesenchymal stem cells. Stem Cell Rep. 2016;7(4):583–90.

    Article  CAS  Google Scholar 

  25. Demirayak B, Yüksel N, Çelik O, Subaşı C, Duruksu G, Unal Z, et al. Effect of bone marrow and adipose tissue-derived mesenchymal stem cells on the natural course of corneal scarring after penetrating injury. Exp Eye Res. 2016;151:227–35.

    Article  CAS  Google Scholar 

  26. Du Y, Carlson E, Funderburgh M, Birk D, Pearlman E, Guo N, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells. 2009;27(7):1635–42.

    Article  CAS  Google Scholar 

  27. Liu H, Zhang J, Liu C-Y, Wang I-J, Sieber M, Chang J, et al. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One. 2010;5(5):e10707.

    Article  Google Scholar 

  28. Coulson Thomas VJ, Caterson B, Kao W. Transplantation of human umbilical mesenchymal stem cells cures the corneal defects of mucopolysaccharidosis VII mice. Stem Cells. 2013;31(10):2116–26.

    Article  CAS  Google Scholar 

  29. Winston W-YK, Vivien J. CT Cell therapy of corneal diseases. Cornea. 2016;35(Suppl 1):S9–S19.

    Google Scholar 

  30. De Miguel M, Fuentes-Julián S, Blázquez-Martínez A, Pascual C, Aller M, Arias J, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12(5):574–91.

    Article  Google Scholar 

  31. Alió Del Barrio J, El Zarif M, De Miguel M, Azaar A, Makdissy N, Harb W, et al. Cellular therapy with human autologous adipose-derived adult stem cells for advanced keratoconus. Cornea. 2017;36(8):952–60.

    Article  Google Scholar 

  32. Alió Del Barrio J, El Zarif M, Azaar A, Makdissy N, Khalil C, Harb W, et al. Corneal stroma enhancement with decellularized stromal laminas with or without stem cell recellularization for advanced keratoconus. Am J Ophthalmol. 2018;186:47–58.

    Article  Google Scholar 

  33. Harkin D, Foyn L, Bray L, Sutherland A, Li F, Cronin B. Concise reviews: can mesenchymal stromal cells differentiate into corneal cells? A systematic review of published data. Stem Cells. 2015;33(3):785–91.

    Article  CAS  Google Scholar 

  34. Jiang Z, Liu G, Meng F, Wang W, Hao P, Xiang Y, et al. Paracrine effects of mesenchymal stem cells on the activation of keratocytes. Br J Ophthalmol. 2017;101(11):1583–90.

    Article  Google Scholar 

  35. Hendijani F. Explant culture: an advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif. 2017;50(2):e12334.

    Article  Google Scholar 

  36. Górski B. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies. Postepy Hig Med Dosw (Online). 2016;70(0):858–71.

    Article  Google Scholar 

  37. Basu S, Hertsenberg AJ, Funderburgh ML, Burrow MK, Mann MM, Du Y, Lathrop KL, Syed-Picard FN, Adams SM, et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med. 2014;6(266):266ra172.

    Article  Google Scholar 

  38. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  Google Scholar 

  39. Naylor RW, Charles NJM, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLoS One. 2016;11(10):e0165464.

    Article  Google Scholar 

  40. Yao L, Bai H. Review: mesenchymal stem cells and corneal reconstruction. Mol Vis. 2013;19:2237–43.

    Google Scholar 

  41. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6(6):1445–51.

    Article  Google Scholar 

  42. Alió JL, El Zarif M, Alió del Barrio JL. Cellular therapy of the corneal stroma: a new type of corneal surgery for keratoconus and corneal dystrophies a translational research experience. 1st ed. Amsterdam: Elsevier; 2020.

    Google Scholar 

  43. De Miguel M, Alio J, Arnalich-Montiel F, Fuentes-Julian S, de Benito-Llopis L, Amparo F, Bataille L. Cornea and ocular surface treatment. Curr Stem Cell Res Ther. 2010;5(2):195–204.

    Article  Google Scholar 

  44. Alió J, Alió Del Barrio J, El Zarif M, Azaar A, Makdissy N, Khalil C, et al. Regenerative surgery of the corneal stroma for advanced keratoconus: 1-year outcomes. Am J Ophthalmol. 2019;203:53–68.

    Article  Google Scholar 

  45. El Zarif M, Alió J, Alió del Barrio J, Abdul Jawad K, Palazón-Bru A, Abdul Jawad Z, et al. Corneal stromal regeneration therapy for advanced keratoconus: long-term outcomes at 3 years. Cornea. 2021;40(6):741–54.

    Article  Google Scholar 

  46. Zuk P, Zhu M, Mizuno H, Huang J, Futrell J, Katz A, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  Google Scholar 

  47. Zuk PA, Zhu M, Ashjian P, De Ugarte D, Huang J, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  Google Scholar 

  48. Bourin P, Bunnell B, Casteilla L, Dominici M, Katz A, March K, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the international Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8.

    Article  Google Scholar 

  49. Ponce Márquez S, Martínez V, McIntosh Ambrose W, Wang J, Gantxegui N, Schein O, et al. Decellularization of bovine corneas for tissue engineering applications. Acta Biomater. 2009;5(6):1839–47.

    Article  Google Scholar 

  50. El Zarif M, Alió del Barrio J, Mingo D, Abdul Jawad K, Alió J. Corneal stroma densitometry evolution in a clinical model of cellular therapy for advanced keratoconus. Cornea. 2022;42:332.

    Article  Google Scholar 

  51. El Zarif M, Abdul Jawad K, Alió del Barrio J, Abdul Jawad Z, Palazón-Bru A, De Miguel M, et al. Corneal stroma cell density evolution in keratoconus corneas following the implantation of adipose mesenchymal stem cells and corneal laminas: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci. 2020;61(4):22.

    Article  Google Scholar 

  52. El Zarif M, Abdul Jawad K, Alió JL. Confocal microscopy of the cornea in a clinical model of corneal stromal expansion using adipose stem cells and corneal decellularized laminas in patients with keratoconus. In: Alió JL, Alió del Barrio JL, Arnalich-Montiel F, editors. Corneal regeneration therapy and surgery. 1st ed. Essentials in ophthalmology. Cham: Springer; 2019. p. 363–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Alió .

Editor information

Editors and Affiliations

Eletronic Supplementary Material

Autologous Adipose Derived Adult Stem Cells (ADASCs) Implantation in Advanced keratoconus (MP4 5737 kb)

Implantation of Descellularized/Recellularized Human Corneal Laminas with (ADASCs) in Advanced keratoconus (MP4 5731 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Zarif, M., del Barrio, J.L.A., Alió, J.L. (2023). Regenerative Surgery of the Corneal Stroma for Advanced Keratoconus. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics