Skip to main content

Induced Pluripotent Stem Cells in Epithelial Lamellar Keratoplasty

  • Chapter
  • First Online:
Modern Keratoplasty

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 159 Accesses

Abstract

Limbal stem cell (LSC) transplantation is required to restore vision in patients suffering from limbal stem cell deficiency (LSCD). Unfortunately, autologous LSC transplantation is not always possible, and allogeneic LSC transplantation often leads to poor long-term outcomes, despite systemic immunosuppression. Induced pluripotent stem cells (iPSCs) represent an unlimited source of autologous cells and could be directed toward corneal epithelial differentiation, thus representing a promising alternative source of cells for corneal epithelial regeneration. In this chapter, we will summarize current methods for iPSC differentiation toward corneal and limbal epithelial cells. Two main strategies that are used for induction of corneal epithelial differentiation of iPSCs, alone or in combination, are mimicking the LSC niche environment (by using feeder cells or different extracellular protein matrix coatings as substrates for cell cultivation in combination with conditioned medium produced by corneal or limbal fibroblasts) or mimicking natural ocular surface development (by inducing a cascade of defined signals known to direct development of corneal epithelium). Although iPSC-derived corneal epithelial cell sheets were transplanted successfully in an experimentally induced animal model of LSCD, future transplantation in humans demands the development of safe and GMP-compliant differentiation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATMP:

Advanced therapeutic medicinal products

CLET:

Cultivated limbal epithelial transplantation

ECM:

Extracellular matrix

EGF:

Epithelial growth factor

ESC:

Embryonic stem cells

FACS:

Fluorescence-activated cell sorting

FBS:

Fetal bovine serum

FGF:

Fibroblast growth factor

GMP:

Good manufacturing practice

HAM:

Human amniotic membrane

iPSC:

Induced pluripotent stem cells

KGF:

Keratinocyte growth factor

KRT:

Cytokeratin

LSC:

Limbal stem cells

LSCD:

Limbal stem cell deficiency

MSC:

Mesenchymal stem cells

MZOC:

Multizone ocular cells

PMC:

Post-mitotic cells

RA:

Trans-retinoic acid

RPE:

Retinal pigmented epithelium

SDIA:

Stromal cell-derived inducing activity

SEAM:

Self-formed ectodermal autonomous multizone

SLET:

Simple limbal epithelial transplantation

SMILE:

Small incision lenticule extraction

TAC:

Transient amplifying ell

TDC:

Terminally differentiated cells

TGF:

Transforming growth factor

References

  1. Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull World Health Organ. 2008;86(1):63–70. https://doi.org/10.2471/blt.07.041210.

    Article  Google Scholar 

  2. Li Z, Duan H, Li W, Hu X, Jia Y, Zhao C, et al. Rapid differentiation of multi-zone ocular cells from human induced pluripotent stem cells and generation of corneal epithelial and endothelial cells. Stem Cells Dev. 2019;28(7):454–63. https://doi.org/10.1089/scd.2018.0176.

    Article  CAS  Google Scholar 

  3. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79(3):214–21.

    CAS  Google Scholar 

  4. Bojic S. Optimisation of protocols for ex vivo expansion of limbal stem cells and their enrichment. Doctoral dissertation, Institute of Genetic Medicine: Newcastle University, Newcastle upon Tyne, United Kingdom; 2020.

    Google Scholar 

  5. Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Prog Mol Biol Transl Sci. 2015;134:7–23. https://doi.org/10.1016/bs.pmbts.2015.04.001.

    Article  Google Scholar 

  6. Cotsarelis G, Cheng S-Z, Dong G, Sun T-T, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57(2):201–9. https://doi.org/10.1016/0092-8674(89)90958-6.

    Article  CAS  Google Scholar 

  7. Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24(10):1442–3.

    CAS  Google Scholar 

  8. Kamarudin TA, Bojic S, Collin J, Yu M, Alharthi S, Buck H, et al. Differences in the activity of endogenous bone morphogenetic protein signaling impact on the ability of induced pluripotent stem cells to differentiate to corneal epithelial-like cells. Stem Cells. 2018;36(3):337–48. https://doi.org/10.1002/stem.2750.

    Article  CAS  Google Scholar 

  9. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157–68. https://doi.org/10.1016/s0092-8674(00)81692-x.

    Article  CAS  Google Scholar 

  10. Takács L, Tóth E, Berta A, Vereb G. Stem cells of the adult cornea: from cytometric markers to therapeutic applications. Cytometry A. 2009;75(1):54–66. https://doi.org/10.1002/cyto.a.20671.

    Article  Google Scholar 

  11. Mushtaq M, Kovalevska L, Darekar S, Abramsson A, Zetterberg H, Kashuba V, et al. Cell stemness is maintained upon concurrent expression of RB and the mitochondrial ribosomal protein S18-2. Proc Natl Acad Sci. 2020;117(27):15673–83. https://doi.org/10.1073/pnas.1922535117.

    Article  CAS  Google Scholar 

  12. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1-2):7–25.

    CAS  Google Scholar 

  13. Dziasko MA, Daniels JT. Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul Surf. 2016;14(3):322–30. https://doi.org/10.1016/j.jtos.2016.04.002.

    Article  Google Scholar 

  14. Mei H, Gonzalez S, Deng SX. Extracellular matrix is an important component of limbal stem cell niche. J Funct Biomater. 2012;3(4):879–94. https://doi.org/10.3390/jfb3040879.

    Article  CAS  Google Scholar 

  15. Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng. 2017;8:2041731417725464. https://doi.org/10.1177/2041731417725464.

    Article  CAS  Google Scholar 

  16. Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229(5286):560–1. https://doi.org/10.1038/229560a0.

    Article  CAS  Google Scholar 

  17. Townsend WM. The limbal palisades of Vogt. Trans Am Ophthalmol Soc. 1991;89:721–56.

    CAS  Google Scholar 

  18. Aberdam E, Petit I, Sangari L, Aberdam D. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing. PLoS One. 2017;12(6):e0179913. https://doi.org/10.1371/journal.pone.0179913.

    Article  CAS  Google Scholar 

  19. Collin J, Queen R, Zerti D, Bojic S, Dorgau B, Moyse N, et al. A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells. Ocul Surf. 2021;21:279–98. https://doi.org/10.1016/j.jtos.2021.03.010.

    Article  Google Scholar 

  20. Altshuler A, Amitai-Lange A, Tarazi N, Dey S, Strinkovsky L, Hadad-Porat S, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing. Cell Stem Cell. 2021;28(7):1248–61. https://doi.org/10.1016/j.stem.2021.04.003.

    Article  CAS  Google Scholar 

  21. Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A. 2005;102(27):9523–8. https://doi.org/10.1073/pnas.0503437102.

    Article  CAS  Google Scholar 

  22. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55. https://doi.org/10.1056/NEJMoa0905955.

    Article  CAS  Google Scholar 

  23. Yu M, Bojic S, Figueiredo GS, Rooney P, de Havilland J, Dickinson A, et al. An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro. Exp Eye Res. 2016;152:113–22. https://doi.org/10.1016/j.exer.2016.09.008.

    Article  CAS  Google Scholar 

  24. Barbaro V, Testa A, Di Iorio E, Mavilio F, Pellegrini G, De Luca M. C/EBPdelta regulates cell cycle and self-renewal of human limbal stem cells. J Cell Biol. 2007;177(6):1037–49. https://doi.org/10.1083/jcb.200703003.

    Article  CAS  Google Scholar 

  25. Bojic S, Hallam D, Alcada N, Ghareeb A, Queen R, Pervinder S, et al. CD200 expression marks a population of quiescent limbal epithelial stem cells with holoclone forming ability. Stem Cells. 2018;36(11):1723–35. https://doi.org/10.1002/stem.2903.

    Article  CAS  Google Scholar 

  26. Umemoto T, Yamato M, Nishida K, Yang J, Tano Y, Okano T. Limbal epithelial side-population cells have stem cell-like properties, including quiescent state. Stem Cells. 2006;24(1):86–94. https://doi.org/10.1634/stemcells.2005-0064.

    Article  Google Scholar 

  27. Ksander BR, Kolovou PE, Wilson BJ, Saab KR, Guo Q, Ma J, et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature. 2014;511(7509):353–7. https://doi.org/10.1038/nature13426.

    Article  CAS  Google Scholar 

  28. Thomas PB, Liu YH, Zhuang FF, Selvam S, Song SW, Smith RE, et al. Identification of notch-1 expression in the limbal basal epithelium. Mol Vis. 2007;13:337–44.

    CAS  Google Scholar 

  29. Merjava S, Neuwirth A, Tanzerova M, Jirsova K. The spectrum of cytokeratins expressed in the adult human cornea, limbus and perilimbal conjunctiva. Histol Histopathol. 2011;26(3):323–31. https://doi.org/10.14670/hh-26.323.

    Article  Google Scholar 

  30. Li DQ, Kim S, Li JM, Gao Q, Choi J, Bian F, et al. Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. Ocul Surf. 2021;20:20–32. https://doi.org/10.1016/j.jtos.2020.12.004.

    Article  Google Scholar 

  31. Dou S, Wang Q, Qi X, Zhang B, Jiang H, Chen S, et al. Molecular identity of human limbal heterogeneity involved in corneal homeostasis and privilege. Ocul Surf. 2021;21:206–20. https://doi.org/10.1016/j.jtos.2021.04.010.

    Article  Google Scholar 

  32. Ahmad S. Concise review: limbal stem cell deficiency, dysfunction, and distress. Stem Cells Transl Med. 2012;1(2):110–5. https://doi.org/10.5966/sctm.2011-0037.

    Article  CAS  Google Scholar 

  33. Kolli S, Ahmad S, Lako M, Figueiredo F. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells. 2010;28(3):597–610. https://doi.org/10.1002/stem.276.

    Article  CAS  Google Scholar 

  34. Espana EM, Grueterich M, Romano AC, Touhami A, Tseng SC. Idiopathic limbal stem cell deficiency. Ophthalmology. 2002;109(11):2004–10. https://doi.org/10.1016/s0161-6420(02)01250-2.

    Article  Google Scholar 

  35. Utheim TP, Aass Utheim Ø, Salvanos P, Jackson CJ, Schrader S, Geerling G, et al. Concise Review: Altered versus unaltered amniotic membrane as a substrate for limbal epithelial cells. Stem Cells Transl Med. 2018;7(5):415–27. https://doi.org/10.1002/sctm.17-0257.

    Article  Google Scholar 

  36. Ghareeb AE, Lako M, Figueiredo FC. Recent advances in stem cell therapy for limbal stem cell deficiency: a narrative review. Ophthalmol Therapy. 2020;9(4):809–31. https://doi.org/10.1007/s40123-020-00305-2.

    Article  Google Scholar 

  37. Osei-Bempong C, Figueiredo FC, Lako M. The limbal epithelium of the eye–a review of limbal stem cell biology, disease and treatment. Bioessays. 2013;35(3):211–9. https://doi.org/10.1002/bies.201200086.

    Article  CAS  Google Scholar 

  38. Shortt AJ, Bunce C, Levis HJ, Blows P, Doré CJ, Vernon A, et al. Three-year outcomes of cultured limbal epithelial allografts in aniridia and Stevens-Johnson syndrome evaluated using the clinical outcome assessment in surgical trials assessment tool. Stem Cells Transl Med. 2014;3(2):265–75. https://doi.org/10.5966/sctm.2013-0025.

    Article  CAS  Google Scholar 

  39. Borderie VM, Ghoubay D, Georgeon C, Borderie M, de Sousa C, Legendre A, et al. Long-term results of cultured limbal stem cell versus limbal tissue transplantation in stage III limbal deficiency. Stem Cells Transl Med. 2019;8(12):1230–41. https://doi.org/10.1002/sctm.19-0021.

    Article  Google Scholar 

  40. Tseng SC, Chen SY, Shen YC, Chen WL, Hu FR. Critical appraisal of ex vivo expansion of human limbal epithelial stem cells. Curr Mol Med. 2010;10(9):841–50. https://doi.org/10.2174/156652410793937796.

    Article  CAS  Google Scholar 

  41. Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S. 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem. 2011;112(4):993–1002. https://doi.org/10.1002/jcb.23028.

    Article  CAS  Google Scholar 

  42. Kolli S, Ahmad S, Mudhar HS, Meeny A, Lako M, Figueiredo FC. Successful application of ex vivo expanded human autologous oral mucosal epithelium for the treatment of total bilateral limbal stem cell deficiency. Stem Cells. 2014;32(8):2135–46. https://doi.org/10.1002/stem.1694.

    Article  CAS  Google Scholar 

  43. Calonge M, Pérez I, Galindo S, Nieto-Miguel T, López-Paniagua M, Fernández I, et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Transl Res. 2019;206:18–40. https://doi.org/10.1016/j.trsl.2018.11.003.

    Article  Google Scholar 

  44. Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao WW. Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol. 2015;15(Suppl 1):155. https://doi.org/10.1186/s12886-015-0138-4.

    Article  CAS  Google Scholar 

  45. Nieto-Nicolau N, Martín-Antonio B, Müller-Sánchez C, Casaroli-Marano RP. In vitro potential of human mesenchymal stem cells for corneal epithelial regeneration. Regen Med. 2020;15(3):1409–26. https://doi.org/10.2217/rme-2019-0067.

    Article  CAS  Google Scholar 

  46. Sareen D, Saghizadeh M, Ornelas L, Winkler MA, Narwani K, Sahabian A, et al. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med. 2014;3(9):1002–12. https://doi.org/10.5966/sctm.2014-0076.

    Article  CAS  Google Scholar 

  47. Huang CY, Liu CL, Ting CY, Chiu YT, Cheng YC, Nicholson MW, et al. Human iPSC banking: barriers and opportunities. J Biomed Sci. 2019;26(1):87. https://doi.org/10.1186/s12929-019-0578-x.

    Article  Google Scholar 

  48. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–30. https://doi.org/10.1038/nrd.2016.245.

    Article  CAS  Google Scholar 

  49. Erbani J, Aberdam D, Larghero J, Vanneaux V. Pluripotent stem cells and other innovative strategies for the treatment of ocular surface diseases. Stem Cell Rev Rep. 2016;12(2):171–8. https://doi.org/10.1007/s12015-016-9643-y.

    Article  CAS  Google Scholar 

  50. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  Google Scholar 

  51. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  Google Scholar 

  52. Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev. 2019;99(1):79–114. https://doi.org/10.1152/physrev.00039.2017.

    Article  CAS  Google Scholar 

  53. Cieślar-Pobuda A, Rafat M, Knoflach V, Skonieczna M, Hudecki A, Małecki A, et al. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. 2016;7(27):42314–29. https://doi.org/10.18632/oncotarget.9791.

    Article  Google Scholar 

  54. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. https://doi.org/10.1126/science.1151526.

    Article  CAS  Google Scholar 

  55. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7. https://doi.org/10.1038/nature05934.

    Article  CAS  Google Scholar 

  56. Kang X, Yu Q, Huang Y, Song B, Chen Y, Gao X, et al. Effects of integrating and non-integrating reprogramming methods on copy number variation and genomic stability of human induced pluripotent stem cells. PLoS One. 2015;10(7):e0131128. https://doi.org/10.1371/journal.pone.0131128.

    Article  CAS  Google Scholar 

  57. Kumar D, Talluri TR, Anand T, Kues WA. Transposon-based reprogramming to induced pluripotency. Histol Histopathol. 2015;30(12):1397–409. https://doi.org/10.14670/hh-11-656.

    Article  CAS  Google Scholar 

  58. Ma X, Kong L, Zhu S. Reprogramming cell fates by small molecules. Protein Cell. 2017;8(5):328–48. https://doi.org/10.1007/s13238-016-0362-6.

    Article  CAS  Google Scholar 

  59. Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Ng MH. Non-integrating lentiviral vectors in clinical applications: a glance through. Biomedicine. 2022;10(1):107. https://doi.org/10.3390/biomedicines10010107.

    Article  CAS  Google Scholar 

  60. Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene. 2019;686:146–59. https://doi.org/10.1016/j.gene.2018.11.069.

    Article  CAS  Google Scholar 

  61. Raab S, Klingenstein M, Liebau S, Linta L. A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int. 2014;2014:768391. https://doi.org/10.1155/2014/768391.

    Article  Google Scholar 

  62. Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10(6):678–84. https://doi.org/10.1016/j.stem.2012.05.005.

    Article  CAS  Google Scholar 

  63. Scesa G, Adami R, Bottai D. iPSC preparation and epigenetic memory: does the tissue origin matter? Cell. 2021;10(6):1470. https://doi.org/10.3390/cells10061470.

    Article  CAS  Google Scholar 

  64. Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014;4:3594. https://doi.org/10.1038/srep03594.

    Article  Google Scholar 

  65. Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther. 2017;8(1):291. https://doi.org/10.1186/s13287-017-0738-4.

    Article  CAS  Google Scholar 

  66. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6(3):217–45. https://doi.org/10.1089/clo.2004.6.217.

    Article  CAS  Google Scholar 

  67. Eintracht J, Toms M, Moosajee M. The use of induced pluripotent stem cells as a model for developmental eye disorders. Front Cell Neurosci. 2020;14:265. https://doi.org/10.3389/fncel.2020.00265.

    Article  CAS  Google Scholar 

  68. Shalom-Feuerstein R, Serror L, De La Forest DS, Petit I, Aberdam E, Camargo L, et al. Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells. 2012;30(5):898–909. https://doi.org/10.1002/stem.1068.

    Article  CAS  Google Scholar 

  69. Hayashi R, Ishikawa Y, Sasamoto Y, Katori R, Nomura N, Ichikawa T, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature. 2016;531(7594):376–80. https://doi.org/10.1038/nature17000.

    Article  CAS  Google Scholar 

  70. Hayashi R, Ishikawa Y, Katori R, Sasamoto Y, Taniwaki Y, Takayanagi H, et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc. 2017;12(4):683–96. https://doi.org/10.1038/nprot.2017.007.

    Article  CAS  Google Scholar 

  71. Shibata S, Hayashi R, Okubo T, Kudo Y, Katayama T, Ishikawa Y, et al. Selective laminin-directed differentiation of human induced pluripotent stem cells into distinct ocular lineages. Cell Rep. 2018;25(6):1668–79.e5. https://doi.org/10.1016/j.celrep.2018.10.032.

    Article  CAS  Google Scholar 

  72. Schlötzer-Schrehardt U, Dietrich T, Saito K, Sorokin L, Sasaki T, Paulsson M, et al. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res. 2007;85(6):845–60. https://doi.org/10.1016/j.exer.2007.08.020.

    Article  CAS  Google Scholar 

  73. Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic M, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 2007;25(5):1145–55. https://doi.org/10.1634/stemcells.2006-0516.

    Article  CAS  Google Scholar 

  74. Hayashi R, Ishikawa Y, Ito M, Kageyama T, Takashiba K, Fujioka T, et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One. 2012;7(9):e45435. https://doi.org/10.1371/journal.pone.0045435.

    Article  CAS  Google Scholar 

  75. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A. 2002;99(3):1580–5. https://doi.org/10.1073/pnas.032662199.

    Article  CAS  Google Scholar 

  76. Qin S, Zheng S, Qi B, Guo R, Hou G. Decellularized human stromal lenticules combine with corneal epithelial-like cells: a new resource for corneal tissue engineering. Stem Cells Int. 2019;2019:4252514. https://doi.org/10.1155/2019/4252514.

    Article  CAS  Google Scholar 

  77. Barbaro V, Ferrari S, Fasolo A, Ponzin D, Di Iorio E. Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes. Mol Vis. 2009;15:2084–93.

    CAS  Google Scholar 

  78. Mikhailova A, Ilmarinen T, Uusitalo H, Skottman H. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Rep. 2014;2(2):219–31. https://doi.org/10.1016/j.stemcr.2013.12.014.

    Article  CAS  Google Scholar 

  79. Mikhailova A, Jylhä A, Rieck J, Nättinen J, Ilmarinen T, Veréb Z, et al. Comparative proteomics reveals human pluripotent stem cell-derived limbal epithelial stem cells are similar to native ocular surface epithelial cells. Sci Rep. 2015;5:14684. https://doi.org/10.1038/srep14684.

    Article  CAS  Google Scholar 

  80. Mikhailova A, Ilmarinen T, Ratnayake A, Petrovski G, Uusitalo H, Skottman H, et al. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Exp Eye Res. 2016;146:26–34. https://doi.org/10.1016/j.exer.2015.11.021.

    Article  CAS  Google Scholar 

  81. Hongisto H, Vattulainen M, Ilmarinen T, Mikhailova A, Skottman H. Efficient and scalable directed differentiation of clinically compatible corneal limbal epithelial stem cells from human pluripotent stem cells. JoVE. 2018;140:58279. https://doi.org/10.3791/58279.

    Article  CAS  Google Scholar 

  82. Kelaini S, Cochrane A, Margariti A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning. 2014;7:19–29. https://doi.org/10.2147/sccaa.S38006.

    Article  Google Scholar 

  83. Yang K, Jiang Z, Wang D, Lian X, Yang T. Corneal epithelial-like transdifferentiation of hair follicle stem cells is mediated by pax6 and beta-catenin/Lef-1. Cell Biol Int. 2009;33(8):861–6. https://doi.org/10.1016/j.cellbi.2009.04.009.

    Article  CAS  Google Scholar 

  84. Blazejewska EA, Schlötzer-Schrehardt U, Zenkel M, Bachmann B, Chankiewitz E, Jacobi C, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27(3):642–52. https://doi.org/10.1634/stemcells.2008-0721.

    Article  CAS  Google Scholar 

  85. Saichanma S, Bunyaratvej A, Sila-Asna M. In vitro transdifferentiation of corneal epithelial-like cells from human skin-derived precursor cells. Int J Ophthalmol. 2012;5(2):158–63. https://doi.org/10.3980/j.issn.2222-3959.2012.02.08.

    Article  CAS  Google Scholar 

  86. Tsai CL, Chuang PC, Kuo HK, Chen YH, Su WH, Wu PC. Differentiation of stem cells from human exfoliated deciduous teeth toward a phenotype of corneal epithelium in vitro. Cornea. 2015;34(11):1471–7. https://doi.org/10.1097/ico.0000000000000532.

    Article  Google Scholar 

  87. Kitazawa K, Hikichi T, Nakamura T, Nakamura M, Sotozono C, Masui S, et al. Direct reprogramming into corneal epithelial cells using a transcriptional network comprising PAX6, OVOL2, and KLF4. Cornea. 2019;38(Suppl 1):S34–41. https://doi.org/10.1097/ico.0000000000002074.

    Article  Google Scholar 

  88. Casaroli-Marano RP, Nieto-Nicolau N, Martínez-Conesa EM, Edel M. Potential role of induced pluripotent stem cells (IPSCs) for cell-based therapy of the ocular surface. J Clin Med. 2015;4(2):318–42. https://doi.org/10.3390/jcm4020318.

    Article  CAS  Google Scholar 

  89. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46. https://doi.org/10.1056/NEJMoa1608368.

    Article  CAS  Google Scholar 

  90. Susaimanickam PJ, Maddileti S, Pulimamidi VK, Boyinpally SR, Naik RR, Naik MN, et al. Generating minicorneal organoids from human induced pluripotent stem cells. Development. 2017;144(13):2338–51. https://doi.org/10.1242/dev.143040.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Bojic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bojic, S., Figueiredo, F., Lako, M. (2023). Induced Pluripotent Stem Cells in Epithelial Lamellar Keratoplasty. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics