Skip to main content

Neuroimaging Findings in FASD Across the Lifespan

  • Chapter
  • First Online:
Fetal Alcohol Spectrum Disorders

Abstract

The following review explores brain magnetic resonance imaging (MRI) literature in fetal alcohol spectrum disorders (FASD). A literature search was conducted utilizing PubMed and PsycINFO. Search terms included: “fetal alcohol spectrum disorders,” “prenatal alcohol exposure,” “FAS,” “FASD,” “PAE,” “neuroimaging,” “MRI,” “fMRI,” “DTI,” “MRS,” “infant,” “child,” “adolescent,” and “adult.” This resulted in 85 articles, with the majority published in the United States and South Africa. Individuals with prenatal alcohol exposure (PAE) demonstrated reductions in the volume of the total brain, corpus callosum, cerebellum, basal ganglia, and hippocampus. Major central and association white matter tracts also showed teratogenic effects. Abnormal functional connectivity is present throughout various regions, aligning with underlying structural abnormalities. Taken together, these alterations may support an understanding of the behavioral changes seen in individuals with FASD and PAE. Future research should focus on infant and early childhood, as well as middle age and older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riley EP, Infante MA, Warren KR. Fetal alcohol spectrum disorders: an overview. Neuropsychol Rev. 2011;21(2):73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoyme HE, Kalberg WO, Elliott AJ, Blankenship J, Buckley D, Marais A-S, et al. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics. 2016 [cited 2021 Feb 25];138(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960726/.

  3. Flannigan K, Wrath A, Ritter C, McLachlan K, Harding KD, Campbell A, et al. Balancing the story of fetal alcohol spectrum disorder: A narrative review of the literature on strengths. Alcohol Clin Exp Res. 2021 [cited 2021 Nov 24]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.14733.

  4. May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D, Manning M, et al. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev. 2009;15(3):176–92.

    Article  PubMed  Google Scholar 

  5. Popova S, Lange S, Shield K, Burd L, Rehm J. Prevalence of fetal alcohol spectrum disorder among special subpopulations: a systematic review and meta-analysis. Addiction. 2019;114(7):1150–72.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jones KL, Smith DW. The fetal alcohol syndrome. Teratology. 1975;12(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  7. Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet (London, England). 1973;302(7836):999–1001.

    Article  CAS  PubMed  Google Scholar 

  8. Coulter CL, Leech RW, Schaefer GB, Scheithauer BW, Brumback RA. Midline cerebral dysgenesis, dysfunction of the hypothalamic-pituitary axis, and fetal alcohol effects. Arch Neurol. 1993;50(7):771–5.

    Article  CAS  PubMed  Google Scholar 

  9. Mattson SN, Riley EP, Jernigan TL, Garcia A, Kaneko WM, Ehlers CL, et al. A decrease in the size of the basal ganglia following prenatal alcohol exposure: a preliminary report. Neurotoxicol Teratol. 1994;16(3):283–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mattson SN, Jernigan TL, Riley EP. MRI and prenatal alcohol exposure. Alcohol Health Res World. 1994;18(1):49–52.

    PubMed  PubMed Central  Google Scholar 

  11. Mattson SN, Riley EP, Jernigan TL, Ehlers CL, Delis DC, Jones KL, et al. Fetal alcohol syndrome: a case report of neuropsychological, MRI, and EEG assessment of two children. Alcohol Clin Exp Res. 1992;16(5):1001–3.

    Article  CAS  PubMed  Google Scholar 

  12. Riley EP, Mattson SN, Sowell ER, Jernigan TL, Sobel DF, Jones KL. Abnormalities of the corpus callosum in children prenatally exposed to alcohol. Alcohol Clin Exp Res. 1995;19(5):1198–202.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson VP, Swayze VW II, Sato Y, Andreasen NC. Fetal alcohol syndrome: craniofacial and central nervous system manifestations. Am J Med Genet. 1996;61(4):329–39.

    Article  CAS  PubMed  Google Scholar 

  14. Hansen J. Netter’s clinical anatomy. 4th ed. Elsevier; 2017. [cited 2021 Nov 3]. Available from: https://www.elsevier.com/books/netters-clinical-anatomy/hansen/978-0-323-53188-7.

    Google Scholar 

  15. Nardelli A, Lebel C, Rasmussen C, Andrew G, Beaulieu C. Extensive deep gray matter volume reductions in children and adolescents with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2011;35(8):1404–17.

    CAS  PubMed  Google Scholar 

  16. Roussotte FF, Sulik KK, Mattson SN, Riley EP, Jones KL, Adnams CM, et al. Regional brain volume reductions relate to facial dysmorphology and neurocognitive function in fetal alcohol spectrum disorders. Hum Brain Mapp. 2012;33(4):920–37.

    Article  PubMed  Google Scholar 

  17. Zhou D, Lebel C, Lepage C, Rasmussen C, Evans A, Wyper K, et al. Developmental cortical thinning in fetal alcohol spectrum disorders. NeuroImage. 2011;58(1):16–25.

    Article  PubMed  Google Scholar 

  18. Archibald SL, Fennema-Notestine C, Gamst A, Riley EP, Mattson SN, Jernigan TL. Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev Med Child Neurol. 2001;43(3):148–54.

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Coles CD, Lynch ME, Hu X. Understanding specific effects of prenatal alcohol exposure on brain structure in young adults. Hum Brain Mapp. 2012;33(7):1663–76.

    Article  PubMed  Google Scholar 

  20. Miles M, Warton FL, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW, et al. Effects of prenatal alcohol exposure on the volumes of the lateral and medial walls of the intraparietal sulcus. Front Neuroanat. 2021;15:639800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Water E, Rockhold MN, Roediger DJ, Krueger AM, Mueller BA, Boys CJ, et al. Social behaviors and gray matter volumes of brain areas supporting social cognition in children and adolescents with prenatal alcohol exposure. Brain Res. 2021;147388:147388.

    Article  Google Scholar 

  22. Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V, et al. Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence. 2013;41(5):597–606.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Astley SJ, Aylward EH, Olson HC, Kerns K, Brooks A, Coggins TE, et al. Magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2009;33(10):1671–89.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Migliorini R, Moore EM, Glass L, Infante MA, Tapert SF, Jones KL, et al. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure. Behav Brain Res. 2015;292:26–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou D, Rasmussen C, Pei J, Andrew G, Reynolds JN, Beaulieu C. Preserved cortical asymmetry despite thinner cortex in children and adolescents with prenatal alcohol exposure and associated conditions. Hum Brain Mapp. 2018;39(1):72–88.

    Article  PubMed  Google Scholar 

  26. Sowell ER, Thompson PM, Mattson SN, Tessner KD, Jernigan TL, Riley EP, et al. Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cereb Cortex. 2002;12(8):856–65.

    Article  PubMed  Google Scholar 

  27. Sowell ER, Mattson SN, Kan E, Thompson PM, Riley EP, Toga AW. Abnormal cortical thickness and brain–behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb Cortex. 2008;18(1):136–44.

    Article  PubMed  Google Scholar 

  28. Yang Y, Roussotte F, Kan E, Sulik KK, Mattson SN, Riley EP, et al. Abnormal cortical thickness alterations in fetal alcohol spectrum disorders and their relationships with facial dysmorphology. Cereb Cortex (New York, N.Y.: 1991). 2012;22(5):1170–9.

    Google Scholar 

  29. Sowell ER, Thompson PM, Peterson BS, Mattson SN, Welcome SE, Henkenius AL, et al. Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. Neuroimage. 2002;17(4):1807–19.

    Article  PubMed  Google Scholar 

  30. Hendrickson TJ, Mueller BA, Sowell ER, Mattson SN, Coles CD, Kable JA, et al. Cortical gyrification is abnormal in children with prenatal alcohol exposure. Neuroimage Clin. 2017;15:391–400.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Infante MA, Moore EM, Bischoff-Grethe A, Migliorini R, Mattson SN, Riley EP. Atypical cortical gyrification in adolescents with histories of heavy prenatal alcohol exposure. Brain Res. 2015;1624:446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Guio F, Mangin J-F, Rivière D, Perrot M, Molteno CD, Jacobson SW, et al. A study of cortical morphology in children with fetal alcohol spectrum disorders. Hum Brain Mapp. 2014;35(5):2285–96.

    Article  PubMed  Google Scholar 

  33. Donald KA, Fouche JP, Roos A, Koen N, Howells FM, Riley EP, et al. Alcohol exposure in utero is associated with decreased gray matter volume in neonates. Metab Brain Dis. 2016;31(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  34. Krueger AM, Roediger DJ, Mueller BA, Boys CA, Hendrickson TJ, Schumacher MJ, et al. Para-limbic structural abnormalities are associated with internalizing symptoms in children with prenatal alcohol exposure. Alcohol Clin Exp Res. 2020 [cited 2020 Jul 8]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.14390.

  35. Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2012;2(12):a009621.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mattson SN, Riley EP, Sowell ER, Jernigan TL, Sobel DF, Jones KL. A decrease in the size of the basal ganglia in children with fetal alcohol syndrome. Alcohol Clin Exp Res. 1996;20(6):1088–93.

    Article  CAS  PubMed  Google Scholar 

  37. Driscoll ME, Bollu PC, Tadi P. Neuroanatomy, nucleus caudate. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2021 [cited 2021 Oct 30]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK557407/.

  38. Joseph J, Warton C, Jacobson SW, Jacobson JL, Molteno CD, Eicher A, et al. Three-dimensional surface deformation-based shape analysis of hippocampus and caudate nucleus in children with fetal alcohol spectrum disorders. Hum Brain Mapp. 2014;35(2):659–72.

    Article  PubMed  Google Scholar 

  39. Ghandili M, Munakomi S. Neuroanatomy, putamen. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2021 [cited 2021 Oct 30]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK542170/.

  40. Torrico TJ, Munakomi S. Neuroanatomy, thalamus. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2021 [cited 2021 Oct 30]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK542184/.

  41. Dodge NC, Thomas KGF, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW. Reduced hippocampal volumes partially mediate effects of prenatal alcohol exposure on spatial navigation on a virtual water maze task in children. Alcohol Clin Exp Res. 2020;44(4):844–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dudek J, Skocic J, Sheard E, Rovet J. Hippocampal abnormalities in youth with alcohol-related neurodevelopmental disorder. J Int Neuropsychol Soc. 2014;20(2):181–91.

    Article  PubMed  Google Scholar 

  43. Roediger DJ, Krueger AM, de Water E, Mueller BA, Boys CA, Hendrickson TJ, et al. Hippocampal subfield abnormalities and memory functioning in children with fetal alcohol spectrum disorders. Neurotoxicol Teratol. 2021;83:106944.

    Article  CAS  PubMed  Google Scholar 

  44. Willoughby KA, Sheard ED, Nash K, Rovet J. Effects of prenatal alcohol exposure on hippocampal volume, verbal learning, and verbal and spatial recall in late childhood. J Int Neuropsychol Soc. 2008;14(6):1022–33.

    Article  PubMed  Google Scholar 

  45. Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain. 2013;136(6):1692–707.

    Article  PubMed  Google Scholar 

  46. Meintjes EM, Narr KL, van der Kouwe AJW, Molteno CD, Pirnia T, Gutman B, et al. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure. Neuroimage Clin. 2014;5:152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajaprakash M, Chakravarty MM, Lerch JP, Rovet J. Cortical morphology in children with alcohol-related neurodevelopmental disorder. Brain Behav. 2014;4(1):41–50.

    Article  PubMed  Google Scholar 

  48. Little G, Beaulieu C. Multivariate models of brain volume for identification of children and adolescents with fetal alcohol spectrum disorder. Hum Brain Mapp. 2020;41(5):1181–94.

    Article  PubMed  Google Scholar 

  49. Bookstein FL, Sampson PD, Connor PD, Streissguth AP. Midline corpus callosum is a neuroanatomical focus of fetal alcohol damage. Anat Rec. 2002;269(3):162–74.

    Article  PubMed  Google Scholar 

  50. Jacobson SW, Jacobson JL, Molteno CD, Warton CMR, Wintermark P, Hoyme HE, et al. Heavy prenatal alcohol exposure is related to smaller corpus callosum in newborn MRI scans. Alcohol Clin Exp Res. 2017;41(5):965–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bookstein FL, Connor PD, Covell KD, Barr HM, Gleason CA, Sze RW, et al. Preliminary evidence that prenatal alcohol damage may be visible in averaged ultrasound images of the neonatal human corpus callosum. Alcohol (Fayettev, NY). 2005;36(3):151–60.

    Article  CAS  Google Scholar 

  52. Bookstein FL, Connor PD, Huggins JE, Barr HM, Pimentel KD, Streissguth AP. Many infants prenatally exposed to high levels of alcohol show one particular anomaly of the corpus callosum. Alcohol Clin Exp Res. 2007;31(5):868–79.

    Article  CAS  PubMed  Google Scholar 

  53. Taylor PA, Jacobson SW, van der Kouwe A, Molteno CD, Chen G, Wintermark P, et al. A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns. Hum Brain Mapp. 2015;36(1):170–86.

    Article  PubMed  Google Scholar 

  54. Donald KA, Roos A, Fouche J-P, Koen N, Howells FM, Woods RP, et al. A study of the effects of prenatal alcohol exposure on white matter microstructural integrity at birth. Acta Neuropsychiatr. 2015;27(4):197–205.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roos A, Wedderburn CJ, Fouche J-P, Subramoney S, Joshi SH, Woods RP, et al. Central white matter integrity alterations in 2-3-year-old children following prenatal alcohol exposure. Drug Alcohol Depend. 2021;225:108826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang Y, Phillips OR, Kan E, Sulik KK, Mattson SN, Riley EP, et al. Callosal thickness reductions relate to facial dysmorphology in fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2012;36(5):798–806.

    Article  PubMed  Google Scholar 

  57. Gautam P, Nuñez SC, Narr KL, Kan EC, Sowell ER. Effects of prenatal alcohol exposure on the development of white matter volume and change in executive function. Neuroimage Clin. 2014;5:19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wozniak JR, Muetzel RL. What does diffusion tensor imaging reveal about the brain and cognition in fetal alcohol spectrum disorders? Neuropsychol Rev. 2011;21(2):133–47.

    Article  PubMed  Google Scholar 

  59. Anna Dyląg K, Sikora-Sporek A, Bańdo B, Boroń-Zyss J, Drożdż D, Dumnicka P, et al. Magnetic resonance imaging (MRI) findings among children with fetal alcohol syndrome (FAS), partial fetal alcohol syndrome (pFAS) and alcohol related neurodevelopmental disorders (ARND). Przegl Lek. 2016;73(9):605–9.

    PubMed  Google Scholar 

  60. Schneble E, Lack C, Zapadka M, Pfeifer CM, Bardo DME, Cagley J, et al. Increased notching of the corpus callosum in fetal alcohol spectrum disorder: a Callosal misunderstanding? AJNR Am J Neuroradiol. 2020;41(4):725–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Candelaria-Cook FT, Schendel ME, Flynn L, Hill DE, Stephen JM. Altered resting-state neural oscillations and spectral power in children with fetal alcohol spectrum disorder. Alcohol Clin Exp Res. 2021;45(1):117–30.

    Article  CAS  PubMed  Google Scholar 

  62. Fan J, Jacobson SW, Taylor PA, Molteno CD, Dodge NC, Stanton ME, et al. White matter deficits mediate effects of prenatal alcohol exposure on cognitive development in childhood. Hum Brain Mapp. 2016;37(8):2943–58.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kar P, Reynolds JE, Grohs MN, Gibbard WB, McMorris C, Tortorelli C, et al. White matter alterations in young children with prenatal alcohol exposure. Dev Neurobiol. 2021;81(4):400–10.

    Article  PubMed  Google Scholar 

  64. Paolozza A, Treit S, Beaulieu C, Reynolds JN. Response inhibition deficits in children with fetal alcohol spectrum disorder: relationship between diffusion tensor imaging of the corpus callosum and eye movement control. Neuroimage Clin. 2014;5:53–61.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Paolozza A, Treit S, Beaulieu C, Reynolds JN. Diffusion tensor imaging of white matter and correlates to eye movement control and psychometric testing in children with prenatal alcohol exposure. Hum Brain Mapp. 2016;38(1):444–56.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wozniak JR, Mueller BA, Chang P-N, Muetzel RL, Caros L, Lim KO. Diffusion tensor imaging in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2006;30(10):1799–806.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Green CR, Lebel C, Rasmussen C, Beaulieu C, Reynolds JN. Diffusion tensor imaging correlates of saccadic reaction time in children with fetal alcohol spectrum disorder. Alcohol Clin Exp Res. 2013;37(9):1499–507.

    Article  PubMed  Google Scholar 

  68. Fryer SL, Schweinsburg BC, Bjorkquist OA, Frank LR, Mattson SN, Spadoni AD, et al. Characterization of white matter microstructure in fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2009;33(3):514–21.

    Article  PubMed  Google Scholar 

  69. Li L, Coles CD, Lynch ME, Hu X. Voxelwise and skeleton-based region of interest analysis of fetal alcohol syndrome and fetal alcohol spectrum disorders in young adults. Hum Brain Mapp. 2009;30(10):3265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma X, Coles CD, Lynch ME, Laconte SM, Zurkiya O, Wang D, et al. Evaluation of corpus callosum anisotropy in young adults with fetal alcohol syndrome according to diffusion tensor imaging. Alcohol Clin Exp Res. 2005;29(7):1214–22.

    Article  PubMed  Google Scholar 

  71. Bookstein FL, Streissguth AP, Sampson PD, Connor PD, Barr HM. Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. NeuroImage. 2002;15(1):233–51.

    Article  PubMed  Google Scholar 

  72. Liu F, Zhang Z, Lin X, Teng G, Meng H, Yu T, et al. Development of the human fetal cerebellum in the second trimester: a post mortem magnetic resonance imaging evaluation. J Anat. 2011;219(5):582–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lerman-Sagie T, Prayer D, Stöcklein S, Malinger G. Fetal cerebellar disorders. Handb Clin Neurol. 2018;155:3–23.

    Article  PubMed  Google Scholar 

  74. Haldipur P, Aldinger KA, Bernardo S, Deng M, Timms AE, Overman LM, et al. Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science. 2019;366(6464):454–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Inkelis SM, Moore EM, Bischoff-Grethe A, Riley EP. Neurodevelopment in adolescents and adults with fetal alcohol spectrum disorders (FASD): a magnetic resonance region of interest analysis. Brain Res. 2020;1732:146654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sullivan EV, Moore EM, Lane B, Pohl KM, Riley EP, Pfefferbaum A. Graded cerebellar lobular volume deficits in adolescents and young adults with fetal alcohol spectrum disorders (FASD). Cereb Cortex (New York, N.Y.: 1991). 2020; https://doi.org/10.1093/cercor/bhaa020.

  77. O’Hare ED, Kan E, Yoshii J, Mattson SN, Riley EP, Thompson PM, et al. Mapping cerebellar vermal morphology and cognitive correlates in prenatal alcohol exposure. Neuroreport. 2005;16(12):1285–90.

    Article  PubMed  Google Scholar 

  78. Sowell ER, Jernigan TL, Mattson SN, Riley EP, Sobel DF, Jones KL. Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: size reduction in lobules I-V. Alcohol Clin Exp Res. 1996;20(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  79. Spottiswoode BS, Meintjes EM, Anderson AW, Molteno CD, Stanton ME, Dodge NC, et al. Diffusion tensor imaging of the cerebellum and eyeblink conditioning in fetal alcohol spectrum disorder. Alcohol Clin Exp Res. 2011;35(12):2174–83.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fan J, Meintjes EM, Molteno CD, Spottiswoode BS, Dodge NC, Alhamud AA, et al. White matter integrity of the cerebellar peduncles as a mediator of effects of prenatal alcohol exposure on eyeblink conditioning. Hum Brain Mapp. 2015;36(7):2470–82.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pillai JJ. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. Am J Neuroradiol. 2010;31(2):219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hall CN, Howarth C, Kurth-Nelson Z, Mishra A. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience. Philos Trans R Soc B Biol Sci. 2016;371(1705):20150348.

    Article  Google Scholar 

  83. Donald KA, Ipser JC, Howells FM, Roos A, Fouche J-P, Riley EP, et al. Interhemispheric functional brain connectivity in neonates with prenatal alcohol exposure: preliminary findings. Alcohol Clin Exp Res. 2016;40(1):113–21.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fan J, Taylor PA, Jacobson SW, Molteno CD, Gohel S, Biswal BB, et al. Localized reductions in resting-state functional connectivity in children with prenatal alcohol exposure. Hum Brain Mapp. 2017;38(10):5217–33.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Little G, Reynolds J, Beaulieu C. Altered functional connectivity observed at rest in children and adolescents prenatally exposed to alcohol. Brain Connect. 2018;8(8):503–15.

    Article  PubMed  Google Scholar 

  86. Santhanam P, Coles CD, Li Z, Li L, Lynch ME, Hu X. Default mode network dysfunction in adults with prenatal alcohol exposure. Psychiatry Res. 2011;194(3):354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wozniak JR, Mueller BA, Muetzel RL, Bell CJ, Hoecker HL, Nelson ML, et al. Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure. Alcohol Clin Exp Res. 2011;35(5):849–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wozniak JR, Mueller BA, Bell CJ, Muetzel RL, Hoecker HL, Boys CJ, et al. Global functional connectivity abnormalities in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2013;37(5):748–56.

    Article  CAS  PubMed  Google Scholar 

  89. Rodriguez CI, Vergara VM, Davies S, Calhoun VD, Savage DD, Hamilton DA. Detection of prenatal alcohol exposure using machine learning classification of resting-state functional network connectivity data. Alcohol (Fayettev, NY). 2021;93:25–34.

    Article  CAS  Google Scholar 

  90. Wozniak JR, Mueller BA, Mattson SN, Coles CD, Kable JA, Jones KL, et al. Functional connectivity abnormalities and associated cognitive deficits in fetal alcohol spectrum disorders (FASD). Brain Imaging Behav. 2017;11(5):1432–45.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Long X, Kar P, Gibbard B, Tortorelli C, Lebel C. The brain’s functional connectome in young children with prenatal alcohol exposure. Neuroimage Clin. 2019;24:102082.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Spadoni AD, Bazinet AD, Fryer SL, Tapert SF, Mattson SN, Riley EP. BOLD response during spatial working memory in youth with heavy prenatal alcohol exposure. Alcohol Clin Exp Res. 2009;33(12):2067–76.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Norman AL, O’Brien JW, Spadoni AD, Tapert SF, Jones KL, Riley EP, et al. A functional magnetic resonance imaging study of spatial working memory in children with prenatal alcohol exposure: contribution of familial history of alcohol use disorders. Alcohol Clin Exp Res. 2013;37(1):132–40.

    Article  PubMed  Google Scholar 

  94. Diwadkar VA, Meintjes EM, Goradia D, Dodge NC, Warton C, Molteno CD, et al. Differences in cortico-striatal-cerebellar activation during working memory in syndromal and nonsyndromal children with prenatal alcohol exposure. Hum Brain Mapp. 2012;34(8):1931–45.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Roussotte FF, Bramen JE, Nunez SC, Quandt LC, Smith L, O’Connor MJ, et al. Abnormal brain activation during working memory in children with prenatal exposure to drugs of abuse: the effects of methamphetamine, alcohol, and polydrug exposure. NeuroImage. 2011;54(4):3067–75.

    Article  CAS  PubMed  Google Scholar 

  96. Roussotte FF, Rudie JD, Smith L, O’Connor MJ, Bookheimer SY, Narr KL, et al. Frontostriatal connectivity in children during working memory and the effects of prenatal methamphetamine, alcohol, and polydrug exposure. Dev Neurosci. 2012;34(1):43–57.

    Article  CAS  PubMed  Google Scholar 

  97. Lewis CE, Thomas KGF, Ofen N, Warton CMR, Robertson F, Lindinger NM, et al. An fMRI investigation of neural activation predicting memory formation in children with fetal alcohol spectrum disorders. Neuroimage Clin. 2021;30:102532.

    Article  PubMed  Google Scholar 

  98. Fryer SL, Tapert SF, Mattson SN, Paulus MP, Spadoni AD, Riley EP. Prenatal alcohol exposure affects frontal-striatal BOLD response during inhibitory control. Alcohol Clin Exp Res. 2007;31(8):1415–24.

    Article  PubMed  Google Scholar 

  99. Ware AL, Infante MA, O’Brien JW, Tapert SF, Jones KL, Riley EP, et al. An fMRI study of behavioral response inhibition in adolescents with and without histories of heavy prenatal alcohol exposure. Behav Brain Res. 2015;278:137–46.

    Article  CAS  PubMed  Google Scholar 

  100. Kodali VN, Jacobson JL, Lindinger NM, Dodge NC, Molteno CD, Meintjes EM, et al. Differential recruitment of brain regions during response inhibition in children prenatally exposed to alcohol. Alcohol Clin Exp Res. 2017;41(2):334–44.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gautam P, Nuñez SC, Narr KL, Mattson SN, May PA, Adnams CM, et al. Developmental trajectories for visuo-spatial attention are altered by prenatal alcohol exposure: a longitudinal FMRI study. Cereb Cortex. 2015;25(12):4761–71.

    Article  CAS  PubMed  Google Scholar 

  102. Li Z, Ma X, Peltier S, Hu X, Coles CD, Lynch ME. Occipital-temporal reduction and sustained visual attention deficit in prenatal alcohol exposed adults. Brain Imaging Behav. 2008;2(1):39–48.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cheng DT, Meintjes EM, Stanton ME, Dodge NC, Pienaar M, Warton CMR, et al. Functional MRI of human eyeblink classical conditioning in children with fetal alcohol spectrum disorders. Cereb Cortex (New York, N.Y.: 1991). 2017;27(7):3752–67.

    Google Scholar 

  104. Lindinger NM, Jacobson JL, Warton CMR, Malcolm-Smith S, Molteno CD, Dodge NC, et al. Fetal alcohol exposure alters BOLD activation patterns in brain regions mediating the interpretation of facial affect. Alcohol Clin Exp Res. 2021;45(1):140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. du Plessis L, Jacobson JL, Jacobson SW, Hess AT, van der Kouwe A, Avison MJ, et al. An in vivo 1H magnetic resonance spectroscopy study of the deep cerebellar nuclei in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2014;38(5):1330–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Astley SJ, Richards T, Aylward EH, Olson HC, Kerns K, Brooks A, et al. Magnetic resonance spectroscopy outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders. Magn Reson Imaging. 2009;27(6):760–78.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cortese BM, Moore GJ, Bailey BA, Jacobson SW, Delaney-Black V, Hannigan JH. Magnetic resonance and spectroscopic imaging in prenatal alcohol-exposed children: preliminary findings in the caudate nucleus. Neurotoxicol Teratol. 2006;28(5):597–606.

    Article  CAS  PubMed  Google Scholar 

  108. Fagerlund Å, Heikkinen S, Autti-Rämö I, Korkman M, Timonen M, Kuusi T, et al. Brain metabolic alterations in adolescents and young adults with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2006;30(12):2097–104.

    Article  CAS  PubMed  Google Scholar 

  109. Riikonen RS, Nokelainen P, Valkonen K, Kolehmainen AI, Kumpulainen KI, Könönen M, et al. Deep serotonergic and dopaminergic structures in fetal alcoholic syndrome: a study with nor-beta-CIT-single-photon emission computed tomography and magnetic resonance imaging volumetry. Biol Psychiatry. 2005;57(12):1565–72.

    Article  CAS  PubMed  Google Scholar 

  110. Fryer SL, Mattson SN, Jernigan TL, Archibald SL, Jones KL, Riley EP. Caudate volume predicts neurocognitive performance in youth with heavy prenatal alcohol exposure. Alcohol Clin Exp Res. 2012;36(11):1932–41.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christie L. M. Petrenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rockhold, M.N., Donald, K.A., Kautz-Turnbull, C., Petrenko, C.L.M. (2023). Neuroimaging Findings in FASD Across the Lifespan. In: Abdul-Rahman, O.A., Petrenko, C.L.M. (eds) Fetal Alcohol Spectrum Disorders . Springer, Cham. https://doi.org/10.1007/978-3-031-32386-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32386-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32385-0

  • Online ISBN: 978-3-031-32386-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics