Skip to main content

FEM-Based Dynamic Model for Cable-Driven Parallel Robots with Elasticity and Sagging

  • Conference paper
  • First Online:
Cable-Driven Parallel Robots (CableCon 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 132))

Included in the following conference series:

  • 448 Accesses

Abstract

Cable-Driven Parallel Robots (CDPRs) are a type of robot that is growing in popularity for different kinds of applications. However, the use of cables instead of rigid links makes the modelling of this robot a complex task, and therefore their trajectory planning and control are challenging. Assumptions such as inelastic, massless and non-sagging cables made when the CDPR is small are no longer valid when the robot becomes large. This paper presents a CDPR dynamic model taking into account cable elasticity and sagging, and its implementation within an open-source framework, named SOFA. Finally, the simulation results are compared to experiments conducted on a suspended CDPR.

This work was supported by both IRT Jules Verne in the framework of the PERFORM program and ROBOTEX 2.0 (Grants ROBOTEX ANR-10-EQPX-44-01 and TIRREX ANR-21-ESRE-0015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/sofa-framework/BeamAdapter.

References

  1. Pott, A., Meyer, C., Verl, A.: Large-scale assembly of solar power plants with parallel cable robots. In: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–6. VDE (2010)

    Google Scholar 

  2. Miermeister, P., et al.: The cablerobot simulator large scale motion platform based on cable robot technology. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3024–3029. IEEE (2016)

    Google Scholar 

  3. Tang, X., Yao, R.: Dimensional design on the six-cable driven parallel manipulator of fast. J. Mech. Des. 133(11), 111012 (2011). https://doi.org/10.1115/1.4004988

  4. Picard, E., Caro, S., Claveau, F., Plestan, F.: Pulleys and force sensors influence on payload estimation of cable-driven parallel robots. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1429–1436, October 2018. https://doi.org/10.1109/IROS.2018.8594171

  5. Santos, J.C., Chemori, A., Gouttefarde, M.: Model predictive control of large-dimension cable-driven parallel robots. In: CableCon 2019. MMS, vol. 74, pp. 221–232. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20751-9_19

    Chapter  Google Scholar 

  6. Picard, E., Tahoumi, E., Plestan, F., Caro, S., Claveau, F.: A new control scheme of cable-driven parallel robot balancing between sliding mode and linear feedback. IFAC-PapersOnLine 53(2), 9936–9943 (2020). https://doi.org/10.1016/j.ifacol.2020.12.2708, 21st IFAC World Congress

  7. Baklouti, S., Courteille, E., Caro, S., Dkhil, M.: Dynamic and oscillatory motions of cable-driven parallel robots based on a nonlinear cable tension model. J. Mech. Robot. 9(6), 061014 (2017)

    Article  Google Scholar 

  8. Saadaoui, R., Laroche, E., Bara, I., Piccin, O.: H\(\infty \) control of a planar 3-dof flexible-cable manipulator. IFAC-PapersOnLine 55, 199–204 (2022). https://doi.org/10.1016/j.ifacol.2022.09.347

  9. Merlet, J.P.: Some properties of the irvine cable model and their use for the kinematic analysis of cable-driven parallel robots. Mech. Mach. Theory 135, 271–280 (2019)

    Article  Google Scholar 

  10. Godbole, H.A., Caverly, R.J., Forbes, J.R.: Dynamic modeling and adaptive control of a single degree-of-freedom flexible cable-driven parallel robot. J. Dyn. Syst. Meas. Control 141(10), 101002 (2019). https://doi.org/10.1115/1.4043427

  11. Okoli, F., Lang, Y., Kermorgant, O., Caro, S.: Cable-driven parallel robot simulation using gazebo and ROS. In: Arakelian, V., Wenger, P. (eds.) ROMANSY 22 – Robot Design, Dynamics and Control. CICMS, vol. 584, pp. 288–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-78963-7_37

    Chapter  Google Scholar 

  12. Michelin, M., Baradat, C., Nguyen, D.Q., Gouttefarde, M.: Simulation and control with XDE and Matlab/simulink of a cable-driven parallel robot (CoGiRo). In: Pott, A., Bruckmann, T. (eds.) Cable-Driven Parallel Robots. MMS, vol. 32, pp. 71–83. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09489-2_6

    Chapter  Google Scholar 

  13. Coppelia Robotics AG. https://www.coppeliarobotics.com/. Accessed 21 Jan 2022

  14. Algoryx Simulation. https://www.algoryx.se/. Accessed 21 Jan 2022

  15. Maplesoft. https://www.maplesoft.com/. Accessed 21 Jan 2022

  16. Coevoet, E., et al.: Software toolkit for modeling, simulation, and control of soft robots. Adv. Robot. 31(22), 1208–1224 (2017)

    Article  Google Scholar 

  17. Duriez, C., Cotin, S., Lenoir, J., Neumann, P.: New approaches to catheter navigation for interventional radiology simulation. Comput. Aided Surg. 11(6), 300–308 (2006)

    Article  Google Scholar 

  18. Przemieniecki, J.S.: Theory of matrix structural analysis. Courier Corporation (1985)

    Google Scholar 

  19. Felippa, C.A., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. theory. Comput. Methods Appl. Mech. Eng. 194(21–24), 2285–2335 (2005)

    Google Scholar 

  20. Jourdes, F., Valentin, B., Allard, J., Duriez, C., Seeliger, B.: Visual haptic feedback for training of robotic suturing. Front. Robot. AI 9 (2022). https://doi.org/10.3389/frobt.2022.800232

  21. Papailiou, K.O.: On the bending stiffness of transmission line conductors. IEEE Trans. Power Delivery 12, 1576–1588 (1997)

    Article  Google Scholar 

  22. Mitiguy, P., Banerjee, A.: Determination of spring constants for modeling flexible beams. Working Model Technical Paper (2000). https://www.researchgate.net/publication/265236214

  23. Adagolodjo, Y., Renda, F., Duriez, C.: Coupling numerical deformable models in global and reduced coordinates for the simulation of the direct and the inverse kinematics of soft robots. IEEE Robot. Autom. Lett. 6(2), 3910–3917 (2021)

    Article  Google Scholar 

  24. Boyer, F., Lebastard, V., Candelier, F., Renda, F.: Dynamics of continuum and soft robots: a strain parameterization based approach. IEEE Trans. Robot. 37(3), 847–863 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Moussa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moussa, K. et al. (2023). FEM-Based Dynamic Model for Cable-Driven Parallel Robots with Elasticity and Sagging. In: Caro, S., Pott, A., Bruckmann, T. (eds) Cable-Driven Parallel Robots. CableCon 2023. Mechanisms and Machine Science, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-32322-5_5

Download citation

Publish with us

Policies and ethics