Skip to main content

Kinetostatic Modeling and Configuration Variation Analysis of Cable-Driven Parallel Robots on Spherical Surfaces

  • Conference paper
  • First Online:
Cable-Driven Parallel Robots (CableCon 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 132))

Included in the following conference series:

  • 464 Accesses

Abstract

Cable-driven parallel robots (CDPRs) have good advantages to cover large part cleaning and manufacturing based on their lightweight designs and scalable workspace. This leads to CDPRs on curved surfaces with variable configurations due to the curvature of the cables. This paper presents a kinetostatic model to find the moving platform position with given set of cable lengths and vice versa, and to solve the cable tension force direction and magnitude for a 3-anchor-point hemispheric CDPR considering the anchors’ quantity and arrangement. The problem is formulated by utilizing geodesic property on spheres and solving planar force balance equations. Corresponding anchor point is defined by the coverage of each set of anchors that counters the gravity. Equivalent positioning provides a solution for sets of non-ordinary-anchor-location-based reconfiguration which changes the maximum cable tension requirements and surface coverage. Simulations and calculations are conducted to illustrate the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pott, A.: Cable-driven parallel robots theory and application. Springer International Publishing (2018)

    Google Scholar 

  2. Pinto, A.M., Moreira, E., Lima, J., Sousa, J.P., Costa, P.: A cable-driven robot for architectural constructions: a visual-guided approach for motion control and path-planning. Auton. Robot. 41(7), 1487–1499 (2016). https://doi.org/10.1007/s10514-016-9609-6

    Article  Google Scholar 

  3. Iturralde, K., et al.: A cable driven parallel robot with a modular end effector for the installation of curtain wall modules. Proc. 37th Int. Symp. Autom. Robot. Constr. 1472–1479 (2020). https://doi.org/10.22260/isarc2020/0204

  4. Seriani, S., Gallina, P., Wedler, A.: A modular cable robot for inspection and light manipulation on celestial bodies. Acta Astronaut. 123, 145–153 (2016). https://doi.org/10.1016/j.actaastro.2016.03.020

    Article  Google Scholar 

  5. Zi, B., Lin, J., Qian, S.: Localization, obstacle avoidance planning and control of a co-operative cable parallel robot for multiple mobile cranes. Robot. Comput. Integr. Manuf. 34, 105–123 (2015). https://doi.org/10.1016/j.rcim.2014.11.005

    Article  Google Scholar 

  6. Duan, B.Y.: A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis. Mechatronics 9, 53–64 (1999). https://doi.org/10.1016/s0957-4158(98)00028-2

    Article  Google Scholar 

  7. Barnett, E., Gosselin, C.: Large-scale 3D printing with a cable-suspended robot. Addit. Manuf. 7, 27–44 (2015). https://doi.org/10.1016/j.addma.2015.05.001

    Article  Google Scholar 

  8. Tanaka, M., Seguchi, Y., Shimada, S.: Kineto-statics of skycam-type wire transport system. In: Proceedings of USA-Japan Symposium on Flexible Automation, Crossing Bridges: Advances in Flexible Automation and Robotics, pp. 689–694 (1988)

    Google Scholar 

  9. Mao, Y., Jin, X., Dutta, G.G., Scholz, J.P., Agrawal, S.K.: Human movement training with a cable driven ARm EXoskeleton (CAREX). IEEE Trans. Neural Syst. Rehabil. Eng. 23, 84–92 (2015). https://doi.org/10.1109/TNSRE.2014.2329018

    Article  Google Scholar 

  10. Jiang, Q., Kumar, V.: Determination and stability analysis of equilibrium configurations of objects suspended from multiple aerial robots. J. Mech. Robot. 4, 1–21 (2012). https://doi.org/10.1115/1.4005588

    Article  Google Scholar 

  11. Gagliardini, L., Caro, S., Gouttefarde, M., Girin, A.: Discrete reconfiguration planning for cable-driven parallel robots. Mech. Mach. Theory 100, 313–337 (2016)

    Article  Google Scholar 

  12. Shao, Z., Xie, G., Zhang, Z., Wang, L.: Design and analysis of the cable-driven parallel robot for cleaning exterior wall of buildings. Int. J. Adva. Robotic Sys. 18(1) (2021). https://doi.org/10.1177/1729881421990313

  13. Williams, R., Gallina, P.: Planar Cable-Direct-Driven Robots, Part I: Kinematics and Statics. Proceedings of the ASME Design Engineering Technical Conference 2 (2001)

    Google Scholar 

  14. Bach, S., Yi, S.: Flexible motion control of a cable-driven robot on 3D curved surface. J. Ins. Cont. Robo. Sys. 26(x), 000–000 (20xx)

    Google Scholar 

  15. Bu, W., Zhou, W., Fang, L., Chen, J., An, X., Huang, J.: A Novel Cable-Driven Parallel Robot for Inner Wall Cleaning of the Large Storage Tank. In: Tan, J. (ed.) ICMD 2019. MMS, vol. 77, pp. 28–40. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9941-2_3

    Chapter  Google Scholar 

  16. Lee, D.G., Oh, S., Son, H.: Il: Wire-driven parallel robotic system and its control for maintenance of offshore wind turbines. Proc. - IEEE Int. Conf. Robot. Autom. 2016-June, 902–908 (2016). https://doi.org/10.1109/ICRA.2016.7487221

  17. Chen, D., Zhang, Y., Li, S.: Zeroing neural-dynamics approach and its robust and rapid solution for parallel robot manipulators against superposition of multiple disturbances. Neurocomputing 275 (2018)

    Google Scholar 

  18. Pham, C.B., Yeo, S.H., Yang, G., Chen, I.-M.: Workspace analysis of fully restrained cable-driven manipulators. Robotics and Autonomous Systems 57(9) (2009)

    Google Scholar 

  19. geodesic: Oxford Reference. Retrieved 30 Nov. 2022, from https://doi.org/10.1093/oi/authority.20110803095848383

  20. Hunt, R.E.: Geodesics on the Surface of a Sphere. Mathematical Tripos and Mathematical Methods II, University of Cambridge, Class Lecture (2007)

    Google Scholar 

  21. Hermus, J., Lachner, J., Verdi, D., Hogan, N.: Exploiting redundancy to facilitate physical interaction. IEEE Trans. Rob. 38(1), 599–615 (2022). https://doi.org/10.1109/TRO.2021.3086632. Feb.

    Article  Google Scholar 

  22. Wang, S., Wang, F., Du, X.: A method for solving the shortest path on curved surface based on psosa algorithm. J. Theoreti. Appl. Info. Technol. 46, 672–676 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongming Gan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, L., Taha, T., Gan, D. (2023). Kinetostatic Modeling and Configuration Variation Analysis of Cable-Driven Parallel Robots on Spherical Surfaces. In: Caro, S., Pott, A., Bruckmann, T. (eds) Cable-Driven Parallel Robots. CableCon 2023. Mechanisms and Machine Science, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-32322-5_4

Download citation

Publish with us

Policies and ethics