Skip to main content

A Predictor-Corrector-Scheme for the Geometry Planning for In-Operation-Reconfiguration of Cable-Driven Parallel Robots

  • Conference paper
  • First Online:
Cable-Driven Parallel Robots (CableCon 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 132))

Included in the following conference series:

  • 417 Accesses

Abstract

This paper presents a predictor-corrector-scheme for determination of a geometry for a cable-driven parallel robot (short: cable robot) for In-Operation-Reconfiguration. The prediction step calculates a guess for the geometry, by determining a transformation of the robot based on a simple workspace abstraction. By using the prediction as initial values, the correction step determines the final set of reconfigurable parameters by constraint optimization, such that, the robot fulfils the requirements sufficiently. The approach considers a spatial cuboid as requirement and takes into the robot properties of cable forces, platform velocities and acting platform wrenches. Conclusively, the method is validated by a simulative scenario, where the numerical properties are evaluated and additionally, practical reconfiguration experiments (according to ISO 9283) to investigate the suitability of the general planning approach. The results show on the one hand that the suitability to rapidly determine a suitable robot’s geometry and on the other hand the feasibility for real reconfiguration planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miermeister, P., et al.: The cablerobot simulator large scale motion platform based on cable robot technology. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), pp. 3024–3029. IEEE (2016)

    Google Scholar 

  2. Kirchgessner, N., et al.: The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct. Plant Biol.: FPB 44(1), 154–168 (2016)

    Article  Google Scholar 

  3. Bosscher, P.M., Williams, R.L., II., Bryson, L.S., Castro-Lacouture, D.: Cable-suspended robotic contour crafting system. Autom. Constr. 17(1), 45–55 (2007)

    Article  Google Scholar 

  4. Muñiz, M.M., et al.: Concrete hybrid manufacturing: a machine architecture. Procedia CIRP 97, 51–58 (2021)

    Article  Google Scholar 

  5. COBOD. World leader in 3D construction printing \(|\) COBOD international (2022). https://cobod.com/

  6. Putzmeister GmbH: Karlos (2022). https://www.putzmeister.com/web/european-union/news-article-detail/-/asset_publisher/karlos-efficient-and-economical-concrete-walls-from-the-3d-printer-1?redirect=/

  7. Reichert, C., Glogowski, P., Bruckmann, T.: Dynamische Rekonfiguration eines seilbasierten Manipulators zur Verbesserung der mechanischen Steifigkeit. In: Bertram, T., Corves, B., Janschek, K. (eds.) Fachtagung Mechatronik 2015: Dortmund, Aachen, 12–13 March 2015, pp. 91–96. Inst. für Getriebetechnik und Maschinendynamik (2015)

    Google Scholar 

  8. Zhou, X., Jun, S.-K., Krovi, V.: Tension distribution shaping via reconfigurable attachment in planar mobile cable robots. Robotica 32(02), 245–256 (2014)

    Article  Google Scholar 

  9. Xiong, H., et al.: Real-time reconfiguration planning for the dynamic control of reconfigurable cable-driven parallel robots. J. Mech. Robot. 14(6) (2022)

    Google Scholar 

  10. Gagliardini, L., Caro, S., Gouttefarde, M., Girin, A.: Discrete reconfiguration planning for cable-driven parallel robots. Mech. Mach. Theory 100, 313–337 (2016)

    Article  Google Scholar 

  11. Skopin, M., Long, P., Padir, T.: Design of a docking system for cable-driven parallel robot to allow workspace reconfiguration in cluttered environments. In: Gouttefarde, M., Bruckmann, T., Pott, A. (eds.) CableCon 2021. MMS, vol. 104, pp. 158–169. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75789-2_13

    Chapter  Google Scholar 

  12. Nguyen, D.Q., Gouttefarde, M., Company, O., Pierrot, F.: On the analysis of large-dimension reconfigurable suspended cable-driven parallel robots. In: 2014 IEEE/RAS International Conference on Robotics and Automation (ICRA 2014), pp. 5728–5735. IEEE (2014)

    Google Scholar 

  13. Trautwein, F., Reichenbach, T., Pott, A., Verl, A.: Workspace planning for in-operation-reconfiguration of cable-driven parallel robots. In: Gouttefarde, M., Bruckmann, T., Pott, A. (eds.) CableCon 2021. MMS, vol. 104, pp. 182–193. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75789-2_15

    Chapter  Google Scholar 

  14. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower pair mechanisms based on matrices. J. Appl. Mech. 22, 215–221 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pott, A.: Efficient computation of the workspace boundary, its properties and derivatives for cable-driven parallel robots. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. MMS, vol. 50, pp. 190–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60867-9_22

    Chapter  Google Scholar 

  16. Pott, A.: WireX: an open source initiative scientific software for analysis and design of cable-driven parallel robots (2019)

    Google Scholar 

  17. Bouchard, S., Moore, B., Gosselin, C.M.: On the ability of a cable-driven robot to generate a prescribed set of wrenches. J. Mech. Robot. 2(1), 1–10 (2010)

    Article  Google Scholar 

  18. Gagliardini, L., Caro, S., Gouttefarde, M.: Dimensioning of cable-driven parallel robot actuators, gearboxes and winches according to the twist feasible workspace. In: 2015 IEEE International Conference on Automation Science and Engineering (CASE 2015), pp. 99–105 (2015)

    Google Scholar 

  19. Epperson, J.F.: An Introduction to Numerical Methods and Analysis, 2nd edn. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  20. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001)

    Google Scholar 

  21. International Organization for Standardization. Manipulating industrial robots: Performance criteria and related test methods (1998). ISO 9283:1998

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2120/1 - 390831618 and the project grant 317440765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Trautwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trautwein, F., Reichenbach, T., Pott, A., Verl, A. (2023). A Predictor-Corrector-Scheme for the Geometry Planning for In-Operation-Reconfiguration of Cable-Driven Parallel Robots. In: Caro, S., Pott, A., Bruckmann, T. (eds) Cable-Driven Parallel Robots. CableCon 2023. Mechanisms and Machine Science, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-32322-5_21

Download citation

Publish with us

Policies and ethics