Skip to main content

The Role of Climate Change in Asthma

  • Chapter
  • First Online:
Precision Approaches to Heterogeneity in Asthma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1426))

Abstract

Human activity and increased use of fossil fuels have led to climate change. These changes are adversely affecting human health, including increasing the risk of developing asthma. Global temperatures are predicted to increase in the future. In 2019, asthma affected an estimated 262 million people and caused 455,000 deaths. These rates are expected to increase. Climate change by intensifying climate events such as drought, flooding, wildfires, sand storms, and thunderstorms has led to increases in air pollution, pollen season length, pollen and mold concentration, and allergenicity of pollen. These effects bear implications for the onset, exacerbation, and management of childhood asthma and are increasing health inequities. Global efforts to mitigate the effects of climate change are urgently needed with the goal of limiting global warming to between 1.5 and 2.0 °C of preindustrial times as per the 2015 Paris Agreement. Clinicians need to take an active role in these efforts in order to prevent further increases in asthma prevalence. There is a role for clinician advocacy in both the clinical setting as well as in local, regional, and national settings to install measures to control and curb the escalating disease burden of childhood asthma in the setting of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246.

    PubMed  PubMed Central  Google Scholar 

  2. Climate.gov. Climate change: global temperature. 2022. Available from: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature.

  3. EPA. Understanding the science of ocean and coastal acidification. Available from: https://www.epa.gov/ocean-acidification/understanding-science-ocean-and-coastal-acidification.

  4. Ahmed F, Ali I, Kousar S, Ahmed S. The environmental impact of industrialization and foreign direct investment: empirical evidence from Asia-Pacific region. Environ Sci Pollut Res. 2022;29(20):29778–92.

    Google Scholar 

  5. Monastersky R. Global carbon dioxide levels near worrisome milestone. Nature. 2013;497(7447):13–4.

    CAS  PubMed  Google Scholar 

  6. National Oceanic and Atmospheric Administration. Carbon dioxide now more than 50% higher than pre-industrial levels. 2022. Available from: https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels#:~:text=Carbon%20dioxide%20measured%20at%20NOAA’s,of%20California%20San%20Diego%20announced.

  7. Januta A. Explainer: the U.N. climate report’s five futures – decoded. 2021. Available from: https://www.reuters.com/business/environment/un-climate-reports-five-futures-decoded-2021-08-09/.

  8. Agache I, Sampath V, Aguilera J, Akdis CA, Akdis M, Barry M, Bouagnon A, Chinthrajah S, Collins W, Dulitzki C, Erny B, Gomez J, Goshua A, Jutel M, Kizer KW, Kline O, LaBeaud AD, Pali-Schöll I, Perrett KP, Peters RL, Plaza MP, Prunicki M, Sack T, Salas RN, Sindher SB, Sokolow SH, Thiel C, Veidis E, Wray BD, Traidl-Hoffmann C, Witt C, Nadeau KC. Climate change and global health: a call to more research and more action. Allergy. 2022;77(5):1389–407.

    PubMed  Google Scholar 

  9. NASA Global Climate Change. A degree of concern: why global temperatures matter. 2019. Available from: https://climate.nasa.gov/news/2865/a-degree-of-concern-why-global-temperatures-matter/.

  10. Climate Action Tracker. Temperatures. Available from: https://climateactiontracker.org/global/temperatures/.

  11. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.

    Google Scholar 

  12. CDC. Most recent national asthma data. 2022. Available from: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm.

  13. Asher MI, García-Marcos L, Pearce NE, Strachan DP. Trends in worldwide asthma prevalence. Eur Respir J. 2020;56(6):2002094.

    PubMed  Google Scholar 

  14. Enilari O, Sinha S. The global impact of asthma in adult populations. Ann Glob Health. 2019;85(1):2.

    PubMed  PubMed Central  Google Scholar 

  15. Council on Environmental Health. Global climate change and children’s health. Pediatrics. 2015;136(5):992–7.

    Google Scholar 

  16. United Nations. 2022. Available from: https://www.un.org/en/global-issues/climate-change.

  17. Rorie A, Poole JA. The role of extreme weather and climate-related events on asthma outcomes. Immunol Allergy Clin N Am. 2021;41(1):73–84.

    Google Scholar 

  18. Grigorieva E, Lukyanets A. Combined effect of hot weather and outdoor air pollution on respiratory health: literature review. Atmosphere. 2021;12(6):790.

    CAS  Google Scholar 

  19. UNICEF. The climate crisis is a child rights crisis. 2021. Available from: https://www.unicef.org/reports/climate-crisis-child-rights-crisis.

  20. Mohr LB, Luo S, Mathias E, Tobing R, Homan S, Sterling D. Influence of season and temperature on the relationship of elemental carbon air pollution to pediatric asthma emergency room visits. J Asthma. 2008;45(10):936–43.

    CAS  PubMed  Google Scholar 

  21. Kemppainen M, Lahesmaa-Korpinen AM, Kauppi P, Virtanen M, Virtanen SM, Karikoski R, Gissler M, Kirjavainen T. Maternal asthma is associated with increased risk of perinatal mortality. PLoS One. 2018;13(5):e0197593.

    PubMed  PubMed Central  Google Scholar 

  22. EPA. Health effects of ozone in patients with asthma and other chronic respiratory disease. 2022. Available from: https://www.epa.gov/ozone-pollution-and-your-patients-health/health-effects-ozone-patients-asthma-and-other-chronic#:~:text=In%20these%20studies%2C%20ozone%20has,likely%20to%20indicate%20worsening%20asthma.

  23. Rossiello MR, Szema A. Health effects of climate change-induced wildfires and heatwaves. Cureus. 2019;11(5):e4771.

    PubMed  PubMed Central  Google Scholar 

  24. McClure CD, Jaffe DA. US particulate matter air quality improves except in wildfire-prone areas. Proc Natl Acad Sci U S A. 2018;115(31):7901–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Han J, Dai H, Gu Z. Sandstorms and desertification in Mongolia, an example of future climate events: a review. Environ Chem Lett. 2021;19(6):4063–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. WHO. Air pollution. Available from: https://www.who.int/health-topics/air-pollution#tab=tab_1.

  27. World Health Organizations. New WHO global air quality guidelines aim to save millions of lives from air pollution. 2021. Available from: https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution.

  28. Tiotiu AI, Novakova P, Nedeva D, Chong-Neto HJ, Novakova S, Steiropoulos P, Kowal K. Impact of air pollution on asthma outcomes. Int J Environ Res Public Health. 2020;17(17):6212.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Saikia D, Mahanta B. Cardiovascular and respiratory physiology in children. Indian J Anaesth. 2019;63(9):690–7.

    PubMed  PubMed Central  Google Scholar 

  30. Tuazon JA, Kilburg-Basnyat B, Oldfield LM, Wiscovitch-Russo R, Dunigan-Russell K, Fedulov AV, Oestreich KJ, Gowdy KM. Emerging insights into the impact of air pollution on immune-mediated asthma pathogenesis. Curr Allergy Asthma Rep. 2022;22(7):77–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mumby S, Chung KF, Adcock IM. Transcriptional effects of ozone and impact on airway inflammation. Front Immunol. 2019;10:1610.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Ma C, Yang A, Zhang R, Gong J, Mo F. Is preterm birth associated with asthma among children from birth to 17 years old? -A study based on 2011–2012 US National Survey of Children’s Health. Ital J Pediatr. 2018;44(1):151.

    PubMed  PubMed Central  Google Scholar 

  33. Goyal NK, Fiks AG, Lorch SA. Association of late-preterm birth with asthma in young children: practice-based study. Pediatrics. 2011;128(4):e830–8.

    PubMed  PubMed Central  Google Scholar 

  34. Gehring U, Wijga AH, Koppelman GH, Vonk JM, Smit HA, Brunekreef B. Air pollution and the development of asthma from birth until young adulthood. Eur Respir J. 2020;56(1):2000147.

    PubMed  Google Scholar 

  35. Abnett K. Wildfires in Europe burn second-biggest area on record. 2022. Available from: https://www.reuters.com/world/europe/wildfires-europe-burn-second-biggest-area-record-2022-08-04/.

  36. World Economic Forum. This is how much carbon wildfires have emitted this year. 2021. Available from: https://www.weforum.org/agenda/2021/12/siberia-america-wildfires-emissions-records-2021/.

  37. Yang L, Li C, Tang X. The impact of PM(2.5) on the host defense of respiratory system. Front Cell Dev Biol. 2020;8:91.

    PubMed  PubMed Central  Google Scholar 

  38. Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016;128:67–74.

    CAS  PubMed  Google Scholar 

  39. Wu J, Zhong T, Zhu Y, Ge D, Lin X, Li Q. Effects of particulate matter (PM) on childhood asthma exacerbation and control in Xiamen, China. BMC Pediatr. 2019;19(1):194.

    PubMed  PubMed Central  Google Scholar 

  40. Aguilera R, Corringham T, Gershunov A, Benmarhnia T. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California. Nat Commun. 2021;12(1):1493.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hauptman M, Balmes JR, Miller MD. The hazards of wildfire smoke exposure for children. Curr Probl Pediatr Adolesc Health Care. 2020;50(2):100756.

    PubMed  Google Scholar 

  42. Tao Z, He H, Sun C, Tong D, Liang X-Z. Impact of fire emissions on U.S. air quality from 1997 to 2016–A modeling study in the satellite era. Remote Sens. 2020;12(6):913.

    Google Scholar 

  43. NPR. The western wildfires are affecting people 3,000 miles away. 2021. Available from: https://www.npr.org/2021/07/21/1018865569/the-western-wildfires-are-affecting-people-3-000-miles-away.

  44. European Commission. ‘Four times more toxic’: how wildfire smoke ages over time. 2020. Available from: https://ec.europa.eu/research-and-innovation/en/horizon-magazine/four-times-more-toxic-how-wildfire-smoke-ages-over-time.

  45. Rappold AG, Reyes J, Pouliot G, Cascio WE, Diaz-Sanchez D. Community vulnerability to health impacts of wildland fire smoke exposure. Environ Sci Technol. 2017;51(12):6674–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Delfino RJ, Brummel S, Wu J, Stern H, Ostro B, Lipsett M, Winer A, Street DH, Zhang L, Tjoa T, Gillen DL. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup Environ Med. 2009;66(3):189–97.

    CAS  PubMed  Google Scholar 

  47. Akpinar-Elci MMPHMD, Berumen-Flucker BMPH, Bayram HMDP, Al-Taiar AMDP. Climate change, dust storms, vulnerable populations, and health in the middle east: a review. J Environ Health. 2021;84(3):8–15.

    Google Scholar 

  48. Gross JE, Carlos WG, Dela Cruz CS, Harber P, Jamil S. Sand and dust storms: acute exposure and threats to respiratory health. Am J Respir Crit Care Med. 2018;198(7):P13–p4.

    PubMed  Google Scholar 

  49. Finance Iaaoea. Without adaptation, Middle East and Central Asia face crippling climate losses. 2022. Available from: https://blogs.imf.org/2022/03/30/without-adaptation-middle-east-and-central-asia-face-crippling-climate-losses/.

  50. Bell ML, Levy JK, Lin Z. The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occup Environ Med. 2008;65(2):104.

    CAS  PubMed  Google Scholar 

  51. Abal AT, Ayed A, Nair PC, Mosawi M, Behbehani N. Factors responsible for asthma and rhinitis among Kuwaiti school children. Med Princ Pract. 2010;19(4):295–8.

    CAS  PubMed  Google Scholar 

  52. Thalib L, Al-Taiar A. Dust storms and the risk of asthma admissions to hospitals in Kuwait. Sci Total Environ. 2012;433:347–51.

    CAS  PubMed  Google Scholar 

  53. Geravandi S, Sicard P, Khaniabadi YO, De Marco A, Ghomeishi A, Goudarzi G, Mahboubi M, Yari AR, Dobaradaran S, Hassani G, Mohammadi MJ, Sadeghi S. A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran. Environ Sci Pollut Res Int. 2017;24(22):18152–9.

    CAS  PubMed  Google Scholar 

  54. Change NGC. A force of nature: hurricanes in a changing climate. 2022. Available from: https://climate.nasa.gov/news/3184/a-force-of-nature-hurricanes-in-a-changing-climate/#:~:text=Moreover%2C%20according%20to%20Knutson%2C%20most,both%20of%20which%20fuel%20hurricanes.

  55. Kossin JP, Knapp KR, Olander TL, Velden CS. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc Natl Acad Sci U S A. 2020;117(22):11975–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cowan KN, Pennington AF, Gregory T, Hsu J. Impact of hurricanes on children with asthma: a systematic literature review. Disaster Med Public Health Prep. 2022;16(2):777–82.

    PubMed  Google Scholar 

  57. Kurup VP. Fungal allergens. Curr Allergy Asthma Rep. 2003;3(5):416–23.

    PubMed  Google Scholar 

  58. D’Amato G, Chong-Neto HJ, Monge Ortega OP, Vitale C, Ansotegui I, Rosario N, Haahtela T, Galan C, Pawankar R, Murrieta-Aguttes M, Cecchi L, Bergmann C, Ridolo E, Ramon G, Gonzalez Diaz S, D’Amato M, Annesi-Maesano I. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy. 2020;75(9):2219–28.

    PubMed  Google Scholar 

  59. Sorrell TC, Chen SC. Fungal-derived immune modulating molecules. Adv Exp Med Biol. 2009;666:108–20.

    CAS  PubMed  Google Scholar 

  60. Quansah R, Jaakkola MS, Hugg TT, Heikkinen SA, Jaakkola JJ. Residential dampness and molds and the risk of developing asthma: a systematic review and meta-analysis. PLoS One. 2012;7(11):e47526.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Caillaud D, Leynaert B, Keirsbulck M, Nadif R. Indoor mould exposure, asthma and rhinitis: findings from systematic reviews and recent longitudinal studies. Eur Respir Rev. 2018;27(148):170137.

    PubMed  PubMed Central  Google Scholar 

  62. Xiao S, Ngo AL, Mendola P, Bates MN, Barcellos AL, Ferrara A, Zhu Y. Household mold, pesticide use, and childhood asthma: a nationwide study in the U.S. Int J Hyg Environ Health. 2021;233:113694.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Paudel B, Chu T, Chen M, Sampath V, Prunicki M, Nadeau KC. Increased duration of pollen and mold exposure are linked to climate change. Sci Rep. 2021;11(1):12816.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Anderegg WRL, Abatzoglou JT, Anderegg LDL, Bielory L, Kinney PL, Ziska L. Anthropogenic climate change is worsening North American pollen seasons. Proc Natl Acad Sci U S A. 2021;118(7):e2013284118.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sapkota A, Dong Y, Li L, Asrar G, Zhou Y, Li X, Coates F, Spanier AJ, Matz J, Bielory L, Breitenother AG, Mitchell C, Jiang C. Association between changes in timing of spring onset and asthma hospitalization in Maryland. JAMA Netw Open. 2020;3(7):e207551.

    PubMed  PubMed Central  Google Scholar 

  66. Neumann JE, Anenberg SC, Weinberger KR, Amend M, Gulati S, Crimmins A, Roman H, Fann N, Kinney PL. Estimates of present and future asthma emergency department visits associated with exposure to oak, birch, and grass pollen in the United States. GeoHealth. 2019;3(1):11–27.

    PubMed  PubMed Central  Google Scholar 

  67. Schmidt Charles W. Pollen overload: seasonal allergies in a changing climate. Environ Health Perspect. 2016;124(4):A70–A5.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ziska LH. Climate, carbon dioxide, and plant-based aero-allergens: a deeper botanical perspective. Front Allergy. 2021;2:714724.

    PubMed  PubMed Central  Google Scholar 

  69. Kevat A. Thunderstorm asthma: looking back and looking forward. J Asthma Allergy. 2020;13:293–9.

    PubMed  PubMed Central  Google Scholar 

  70. Woodhead M. Hospitals overwhelmed with patients after “thunderstorm asthma” hits Melbourne. BMJ. 2016;355:i6391.

    PubMed  Google Scholar 

  71. Park JH, Lee E, Fechter-Leggett ED, Williams E, Yadav S, Bakshi A, Ebelt S, Bell JE, Strosnider H, Chew GL. Associations of emergency department visits for asthma with precipitation and temperature on thunderstorm days: a time-series analysis of data from Louisiana, USA, 2010–2012. Environ Health Perspect. 2022;130(8):87003.

    CAS  PubMed  Google Scholar 

  72. Stewart C, Young NL, Kim ND, Johnston DM, Turner R. Thunderstorm asthma: a review, risks for Aotearoa New Zealand, and health emergency management considerations. N Z Med J. 2022;135(1557):49–63.

    PubMed  Google Scholar 

  73. Hajat A, Hsia C, O’Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr Environ Health Rep. 2015;2(4):440–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Trikamjee T, Comberiati P, Peter J. Pediatric asthma in developing countries: challenges and future directions. Curr Opin Allergy Clin Immunol. 2022;22(2):80–5.

    PubMed  Google Scholar 

  75. Mortimer K, Reddel HK, Pitrez PM, Bateman ED. Asthma management in low- and middle-income countries: case for change. Eur Respir J. 2022;60(3):2103179.

    PubMed  PubMed Central  Google Scholar 

  76. Akinbami LJ, Simon AE, Rossen LM. Changing trends in asthma prevalence among children. Pediatrics. 2016;137(1):1–7.

    PubMed  Google Scholar 

  77. Gutschow B, Gray B, Ragavan MI, Sheffield PE, Philipsborn RP, Jee SH. The intersection of pediatrics, climate change, and structural racism: ensuring health equity through climate justice. Curr Probl Pediatr Adolesc Health Care. 2021;51(6):101028.

    PubMed  Google Scholar 

  78. NCRC. HOLC “redlining” maps: the persistent structure of segregation and economic inequality. 2018. Available from: https://dataspace.princeton.edu/bitstream/88435/dsp01dj52w776n/1/NCRC-Research-HOLC-10.pdf.

  79. HHS.gov. Asthma and African Americans. 2021. Available from: https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=4&lvlid=15.

  80. CDC. Preterm birth. 2021. Available from: https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm.

  81. Ju L, Li C, Yang M, Sun S, Zhang Q, Cao J, Ding R. Maternal air pollution exposure increases the risk of preterm birth: evidence from the meta-analysis of cohort studies. Environ Res. 2021;202:111654.

    CAS  PubMed  Google Scholar 

  82. Chen X, Tan CM, Zhang X, Zhang X. The effects of prenatal exposure to temperature extremes on birth outcomes: the case of China. J Popul Econ. 2020;33(4):1263–302.

    PubMed  PubMed Central  Google Scholar 

  83. EPA. Climate change and social vulnerability in the United States: a focus on six impacts. 2021. Available from: https://www.epa.gov/system/files/documents/2021-09/climate-vulnerability_september-2021_508.pdf.

  84. European Environment Agency. What is the difference between adaptation and mitigation? Available from: https://www.eea.europa.eu/help/faq/what-is-the-difference-between#:~:text=In%20essence%2C%20adaptation%20can%20be,(GHG)%20into%20the%20atmosphere.

  85. ACOG. ACOG issues updated guidance on reducing patients’ exposure to environmental toxins before and during pregnancy. 2021. Available from: https://www.acog.org/news/news-releases/2021/06/acog-updated-guidance-reducing-patients-exposure-to-environmental-toxins-before-and-during-pregnancy.

  86. Airnow. Get air quality data where you live. 2022. Available from: https://www.airnow.gov.

  87. California Air Resource Board. Protecting yourself from wildfire smoke. 2023. Available from: https://ww2.arb.ca.gov/protecting-yourself-wildfire-smoke.

  88. Pollen.com. Pollen forecasts. Available from: https://www.pollen.com.

  89. NDRC. Climate action: global transition away from HFCs. 2017. Available from: https://www.nrdc.org/experts/anjali-jaiswal/climate-action-global-transition-away-hfcs-moving-forw#:~:text=HFCs%20are%20incredibly%20potent%20greenhouse,or%20more%20of%20carbon%20dioxide.

  90. Janson C, Henderson R, Löfdahl M, Hedberg M, Sharma R, Wilkinson AJK. Carbon footprint impact of the choice of inhalers for asthma and COPD. Thorax. 2020;75(1):82.

    PubMed  Google Scholar 

  91. Woodcock A, Janson C, Rees J, Frith L, Löfdahl M, Moore A, Hedberg M, Leather D. Effects of switching from a metered dose inhaler to a dry powder inhaler on climate emissions and asthma control: post-hoc analysis. Thorax. 2022:thoraxjnl-2021-218088.

    Google Scholar 

  92. AstraZeneca. Carbon studies showed uncontrolled asthma is associated with an increased carbon footprint of asthma care. 2021. Available from: https://www.astrazeneca.com/media-centre/medical-releases/carbon-studies-showed-uncontrolled-asthma-is-associated-with-an-increased-carbon-footprint-of-asthma-care.html.

  93. Dzau VJ, Levine R, Barrett G, Witty A. Decarbonizing the U.S. health sector – a call to action. N Engl J Med. 2021;385(23):2117–9.

    PubMed  Google Scholar 

  94. The Climate Reality Project. Climate adaptation vs. mitigation: what’s the fifference and why does it matter? 2019. Available from: https://www.climaterealityproject.org/blog/climate-adaptation-vs-mitigation-why-does-it-matter.

  95. Hsu S, Thiel CL, Mello MJ, Slutzman JE. Dumpster diving in the emergency department. West J Emerg Med. 2020;21(5):1211–7.

    PubMed  PubMed Central  Google Scholar 

  96. Perera F, Cooley D, Berberian A, Mills D, Kinney P. Co-benefits to children’s health of the U.S. regional greenhouse gas initiative. Environ Health Perspect. 2020;128(7):077006.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. The World Bank. Social dimensions of climate change. Available from: https://www.worldbank.org/en/topic/social-dimensions-of-climate-change.

  98. Asher I, Haahtela T, Selroos O, Ellwood P, Ellwood E. Global Asthma Network survey suggests more national asthma strategies could reduce burden of asthma. Allergol Immunopathol (Madr). 2017;45(2):105–14.

    CAS  PubMed  Google Scholar 

  99. Serebrisky D, Wiznia A. Pediatric asthma: a global epidemic. Ann Glob Health. 2019;85(1):6.

    PubMed  PubMed Central  Google Scholar 

  100. Amini H. WHO air quality guidelines need to be adopted. Int J Public Health. 2021;66:1604483.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goshua, A., Sampath, V., Efobi, J.A., Nadeau, K. (2023). The Role of Climate Change in Asthma. In: Brasier, A.R., Jarjour, N.N. (eds) Precision Approaches to Heterogeneity in Asthma. Advances in Experimental Medicine and Biology, vol 1426. Springer, Cham. https://doi.org/10.1007/978-3-031-32259-4_2

Download citation

Publish with us

Policies and ethics