Skip to main content

Bio-Technologies to Understand Aging, Frailty, and Resilience

  • Chapter
  • First Online:
Gerontechnology. A Clinical Perspective

Part of the book series: Practical Issues in Geriatrics ((PIG))

  • 218 Accesses

Abstract

Biotechnologies applied in gerontology field, might allow a better understanding of the biological basis of aging and its relationship to disease, to capture also biological mechanisms of frailty and resilience. Mechanisms underlying the aging process might be strictly interconnected with morbidity. Aging is conceptualized as the ratio between damage accumulation, and resilience strategies of maintenance and repair. The age-related unbalance toward the accumulation of molecular damage creates the susceptibility for the emergence of chronic diseases, which take different forms based on heterogeneous genetic background, behaviors, and environmental exposures. Several lines of evidence suggest that aging can be slowed down and perhaps even reversed. The identification and measurement of biomarkers of aging process would not only be useful from diagnostic and prognostic points of view, but also, and above all, from a therapeutic one. In fact, a biomarker could represent a therapeutic target, and, following its trend over time, an indicator of response to therapy. Finding strategies to slowing down biological aging could potentially delay the onset and progression of multiple chronic diseases and functional decline and reduce the burden of multimorbidity. To date more than 200 compounds has been tested as potential rejuvenation strategies. The effectiveness of such approaches on aging trajectories should be verified in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kennedy BK, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferrucci L, et al. Measuring biological aging in humans: a quest. Aging Cell. 2020;19(2):e13080.

    CAS  PubMed  Google Scholar 

  3. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. J Nutr. 1935;10(1):63–79.

    CAS  Google Scholar 

  4. Mattison JA, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21.

    CAS  PubMed  Google Scholar 

  5. Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev. 2006;127(1):1–7.

    PubMed  Google Scholar 

  6. Walston J, et al. Moving frailty toward clinical practice: NIA intramural frailty science symposium summary. J Am Geriatr Soc. 2019;67(8):1559–64.

    PubMed  PubMed Central  Google Scholar 

  7. Hadley EC, et al. Report: NIA workshop on measures of physiologic resiliencies in human aging. J Gerontol A Biol Sci Med Sci. 2017;72(7):980–90.

    PubMed  PubMed Central  Google Scholar 

  8. Lopez-Otin C, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Levine ME, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.

    PubMed  Google Scholar 

  10. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84.

    CAS  PubMed  Google Scholar 

  11. Richardson AG, Schadt EE. The role of macromolecular damage in aging and age-related disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S28–32.

    CAS  PubMed  Google Scholar 

  12. Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S33–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang MJ, et al. Rejuvenating strategies of tissue-specific stem cells for healthy aging. Aging Dis. 2019;10(4):871–82.

    PubMed  PubMed Central  Google Scholar 

  14. Gonzalez-Freire M, et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015;70(11):1334–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Epel ES, Lithgow GJ. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S10–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Franceschi C, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    CAS  PubMed  Google Scholar 

  17. Franceschi C, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90.

    CAS  PubMed  Google Scholar 

  18. Ferrucci L, et al. Time and the metrics of aging. Circ Res. 2018;123(7):740–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. LeBrasseur NK, et al. Identifying biomarkers for biological age: Geroscience and the ICFSR task force. J Frailty Aging. 2021;10(3):196–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xia X, et al. Molecular and phenotypic biomarkers of aging. F1000Res. 2017;6:860.

    PubMed  PubMed Central  Google Scholar 

  21. Flores M, et al. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med. 2013;10(6):565–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee C, Longo V. Dietary restriction with and without caloric restriction for healthy aging. F1000Research. 2016;5:F1000. Faculty Rev-117

    PubMed  PubMed Central  Google Scholar 

  23. Goh J, et al. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J. 2021;

    Google Scholar 

  24. Ho D, et al. Enabling technologies for personalized and precision medicine. Trends Biotechnol. 2020;38(5):497–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahmoudi S, Xu L, Brunet A. Turning back time with emerging rejuvenation strategies. Nat Cell Biol. 2019;21(1):32–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Longo VD, et al. Interventions to slow aging in humans: are we ready? Aging Cell. 2015;14(4):497–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Harrison DE, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin-Montalvo A, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192.

    PubMed  Google Scholar 

  29. Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 2014;35(3):146–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Custodero C, et al. Nicotinamide riboside-a missing piece in the puzzle of exercise therapy for older adults? Exp Gerontol. 2020;137:110972.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Conboy IM, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433(7027):760–4.

    CAS  PubMed  Google Scholar 

  32. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    CAS  PubMed  Google Scholar 

  33. Coppe JP, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Denoth-Lippuner A, Jessberger S. Mechanisms of cellular rejuvenation. FEBS Lett. 2019;593(23):3381–92.

    CAS  PubMed  Google Scholar 

  36. Mendelsohn AR, Larrick JW. Epigenetic age reversal by cell-extrinsic and cell-intrinsic means. Rejuvenation Res. 2019;22(5):439–46.

    PubMed  Google Scholar 

  37. Trendelenburg AU, et al. Geroprotectors: a role in the treatment of frailty. Mech Ageing Dev. 2019;180:11–20.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Custodero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Custodero, C., Pilotto, A., Ferrucci, L. (2023). Bio-Technologies to Understand Aging, Frailty, and Resilience. In: Pilotto, A., Maetzler, W. (eds) Gerontechnology. A Clinical Perspective. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-32246-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32246-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32245-7

  • Online ISBN: 978-3-031-32246-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics