Skip to main content

Robots in Geriatric Care: A Future with No Return?

  • Chapter
  • First Online:
Gerontechnology. A Clinical Perspective

Abstract

The worldwide increase of the life expectancy puts the healthcare systems in certain countries under growing pressure due to more common functional impairments, chronic and degenerative diseases typically related to senescence. As a response to older people’s needs, robotic systems can offer versatile solutions in geriatric healthcare. Above all, robots can be used as rehabilitative and assistive tools for people with motor impairments. Furthermore, homes are already starting to be inhabited by assistive robotic agents that can offer specific services to stimulate the mental processes, the mood, and the social activity of older adults as well as improve their safety and autonomy. In particular, telepresence robots can actually extend the environment and the social contacts of the older person beyond the domestic boundaries. Finally, indoor sensorized environments can connect different devices to obtain an assistive robotic ecosystem like the EDITH (Embodied Distributed Intelligent Technologies for Healthcare) Setup. This kind of connected health solution can highly improve the quality of life of older adults and, overall, of people with fragilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.axyn.fr/

References

  1. Sale P. Gerontechnology, domotics, and robotics. In: Rehabilitation medicine for elderly patients. Springer; 2018. p. 161–9.

    Chapter  Google Scholar 

  2. Osaka K, Tanioka T, Tanioka R, Kai Y, Locsin RC. Effectiveness of care robots, and the intermediaries’ role between and among care robots and older adults. In: 2020 IEEE/SICE International Symposium on System Integration (SII). IEEE; 2020. p. 611–6.

    Chapter  Google Scholar 

  3. Bianchi AB, Antunes MD, Santos NQ, Bulla HA, Silva ES, Marques AP, Bertolini SMMG. Posture and balance in elderly who practice and who do not practice physical activities. J Phys Educ. 2020;31

    Google Scholar 

  4. Curreri C, Trevisan C, Carrer P, Facchini S, Giantin V, Maggi S, Noale M, De Rui M, Perissinotto E, Zambon S. Difficulties with fine motor skills and cognitive impairment in an elderly population: the progetto Veneto anziani. J Am Geriatr Soc. 2018;66(2):350–6.

    Article  PubMed  Google Scholar 

  5. Rand D. Proprioception deficits in chronic stroke—upper extremity function and daily living. PLoS One. 2018;13(3):e0195043.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang Q, Lin Y, Liu X, Zhang L, Zhang Y, Zhao D, Lu Q, Jia J. Diabetic peripheral neuropathy affects pinch strength and hand dexterity in elderly patients. Neural Plast. 2021;2021:1.

    Google Scholar 

  7. Park H-J, Lee N-G, Kang T-W. Fall-related cognition, motor function, functional ability, and depression measures in older adults with dementia. NeuroRehabilitation. 2020;47(4):487–94.

    Article  PubMed  Google Scholar 

  8. Cai Y, Leveille SG, Hausdorff JM, Bean JF, Manor B, McLean RR, You T. Chronic musculoskeletal pain and foot reaction time in older adults. J Pain. 2021;22(1):76–85.

    Article  PubMed  Google Scholar 

  9. Barresi G, Zenzeri J, Tessadori J, Laffranchi M, Semprini M, De Michieli L. Neuro-Gerontechnologies: applications and opportunities. In: Scataglini S, Imbesi S, Marques G, editors. Internet of things for human-centered design: application to elderly healthcare. Springer; n.d.

    Google Scholar 

  10. Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM&R. 2018;10(9):S174–88.

    Article  Google Scholar 

  11. Garro F, Chiappalone M, Buccelli S, De Michieli L, Semprini M. Neuromechanical biomarkers for robotic neurorehabilitation. Front Neurorobot. 2021;15

    Google Scholar 

  12. Iandolo R, Marini F, Semprini M, Laffranchi M, Mugnosso M, Cherif A, De Michieli L, Chiappalone M, Zenzeri J. Perspectives and challenges in robotic neurorehabilitation. Appl Sci. 2019;9(15):3183.

    Article  Google Scholar 

  13. Masia L, Casadio M, Giannoni P, Sandini G, Morasso P. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study. J Neuroeng Rehabil. 2009;6(1):1–11.

    Article  Google Scholar 

  14. Saglia JA, De Luca A, Squeri V, Ciaccia L, Sanfilippo C, Ungaro S, De Michieli L. Design and development of a novel core, balance and lower limb rehabilitation robot: hunova®. In: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR). IEEE; 2019. p. 417–22.

    Chapter  Google Scholar 

  15. Godfrey SB, Barresi G. Video games for positive aging: playfully engaging older adults. In: Scataglini S, Imbesi S, Marques G, editors. Internet of things for human-centered design: application to elderly healthcare. Springer; n.d.

    Google Scholar 

  16. Baur K, Schättin A, de Bruin ED, Riener R, Duarte JE, Wolf P. Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: a systematic review of health-related multiplayer games. J Neuroeng Rehabil. 2018;15(1):1–19.

    Article  Google Scholar 

  17. Veerubhotla A, Ehrenberg N, Ibironke O, Pilkar R. Objective evaluation of risk of falls in individuals with chronic stroke: feasibility study. Arch Phys Med Rehabil. 2021;102(10):e101.

    Article  Google Scholar 

  18. Cella A, De Luca A, Squeri V, Parodi S, Puntoni M, Vallone F, Giorgeschi A, Garofalo V, Zigoura E, Senesi B. Robotic balance assessment in community-dwelling older people with different grades of impairment of physical performance. Aging Clin Exp Res. 2020;32(3):491–503.

    Article  PubMed  Google Scholar 

  19. Ai Q, Liu Z, Meng W, Liu Q, Xie SQ. Machine learning in robot assisted upper limb rehabilitation: a focused review. In: IEEE Transactions on Cognitive and Developmental Systems; 2021.

    Google Scholar 

  20. Kapsalyamov A, Hussain S, Jamwal PK. State-of-the-art assistive powered upper limb exoskeletons for elderly. IEEE Access. 2020;8:178991–9001.

    Article  Google Scholar 

  21. Latt WT, Luu TP, Kuah C. Tech AW towards an upper-limb exoskeleton system for assistance in activities of daily living (ADLs). In: Proceedings of the International Convention on Rehabilitation Engineering & Assistive Technology; 2014. p. 1–4.

    Google Scholar 

  22. Kapsalyamov A, Jamwal PK, Hussain S, Ghayesh MH. State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access. 2019;7:95075–86.

    Article  Google Scholar 

  23. Laffranchi M, D'Angella S, Vassallo C, Piezzo C, Canepa M, De Giuseppe S, Di Salvo M, Succi A, Cappa S, Cerruti G. User-Centered Design and Development of the Modular TWIN Lower Limb Exoskeleton. Front Neurorobot. 2021;15:15.

    Article  Google Scholar 

  24. Xiloyannis M, Chiaradia D, Frisoli A, Masia L. Physiological and kinematic effects of a soft exosuit on arm movements. J Neuroeng Rehabil. 2019;16(1):1–15.

    Article  Google Scholar 

  25. Di Natali C, Poliero T, Sposito M, Graf E, Bauer C, Pauli C, Bottenberg E, De Eyto A, O’Sullivan L, Hidalgo AF. Design and evaluation of a soft assistive lower limb exoskeleton. Robotica. 2019;37(12):2014–34.

    Article  Google Scholar 

  26. Sivakanthan S, Candiotti JL, Sundaram AS, Duvall JA, Sergeant JJG, Cooper R, Satpute S, Turner RL, Cooper RA. Mini-review: robotic wheelchair taxonomy and readiness. Neurosci Lett. 2022;136482:136482.

    Article  Google Scholar 

  27. Phalaprom S, Jitngernmadan P. iFeedingBot: a vision-based feeding robotic arm prototype based on open source solution. In: International conference on computers helping people with special needs. Springer; 2020. p. 446–52.

    Chapter  Google Scholar 

  28. Nazrin A, Abdulla R, San LY. A low cost stabilizing spoon for people with parkinson’s disease. J Appl Technol Innov. 2021;5(3):32.

    Google Scholar 

  29. Prylińska M, Husejko J, Kwiatkowska K, Wycech A, Kujaciński M, Rymarska O, Sarnowska J, Rogala D, Jarosz K, Nieciecka A. Care for an elderly person after lower limb amputation. J Edu Health Sport. 2019;9(8):886–94.

    Google Scholar 

  30. Shore L, de Eyto A, O’Sullivan L. Technology acceptance and perceptions of robotic assistive devices by older adults–implications for exoskeleton design. In: Disability and rehabilitation: assistive technology; 2020. p. 1–9.

    Google Scholar 

  31. Sposito M, Poliero T, Di Natali C, Semprini M, Barresi G, Laffranchi M, Caldwell D, De Michieli L, Ortiz J. Exoskeletons in elderly healthcare. In: Scataglini S, Imbesi S, Marques G, editors. Internet of things for human-centered design: application to elderly healthcare. Springer; n.d.

    Google Scholar 

  32. Caleb-Solly P, Dogramadzi S, Huijnen CA, Heuvel H. Exploiting ability for human adaptation to facilitate improved human-robot interaction and acceptance. Inf Soc. 2018;34(3):153–65.

    Article  Google Scholar 

  33. Ding M, Ikeura R, Mori Y, Mukai T, Hosoe S. Measurement of human body stiffness for lifting-up motion generation using nursing-care assistant robot—RIBA. In: SENSORS, 2013 IEEE. IEEE; 2013. p. 1–4.

    Google Scholar 

  34. Ford AB, Haug MR, Stange KC, Gaines AD, Noelker LS, Jones PK. Sustained personal autonomy: a measure of successful aging. J Aging Health. 2000;12(4):470–89.

    Article  CAS  PubMed  Google Scholar 

  35. Van der Weele GM, Gussekloo J, De Waal MW, De Craen AJ, Van der Mast RC. Co-occurrence of depression and anxiety in elderly subjects aged 90 years and its relationship with functional status, quality of life and mortality. Int J Geriatr Psychiatry. 2009;24(6):595–601.

    Article  PubMed  Google Scholar 

  36. Plagg B, Engl A, Piccoliori G, Eisendle K. Prolonged social isolation of the elderly during COVID-19: between benefit and damage. Arch Gerontol Geriatr. 2020;89:104086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bassuk SS, Glass TA, Berkman LF. Social disengagement and incident cognitive decline in community-dwelling elderly persons. Ann Intern Med. 1999;131(3):165–73.

    Article  CAS  PubMed  Google Scholar 

  38. Seeman TE, Lusignolo TM, Albert M, Berkman L. Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging. Health Psychol. 2001;20(4):243.

    Article  CAS  PubMed  Google Scholar 

  39. Márquez-Sáncheza S, Mora-Simonb S, Herrera-Santosa J, Roncerod AO, Corchadoa JM. Intelligent dolls and robots for the treatment of elderly people with dementia. Adv Distrib Comput Art Intell J. 2020;9(1):99–112.

    Google Scholar 

  40. Abdi J, Al-Hindawi A, Ng T, Vizcaychipi MP. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open. 2018;8(2):e018815.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thunberg S, Rönnqvist L, Ziemke T. Do robot pets decrease agitation in dementia patients? In: International Conference on Social Robotics. Springer; 2020. p. 616–27.

    Chapter  Google Scholar 

  42. Sharma A, Rathi Y, Patni V, Sinha DKA. Systematic review of assistance robots for elderly care. In: 2021 International Conference on Communication information and Computing Technology (ICCICT). IEEE; 2021. p. 1–6.

    Google Scholar 

  43. Cooper S, Di Fava A, Villacañas Ó, Silva T, Fernandez-Carbajales V, Unzueta L, Serras M, Marchionni L, Ferro F. Social robotic application to support active and healthy ageing. In: 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). IEEE; 2021. p. 1074–80.

    Chapter  Google Scholar 

  44. Schellin H, Oberley T, Patterson K, Kim B, Haring KS, Tossell CC, Phillips E, de Visser EJ. Man’s new best friend? Strengthening human-robot dog bonding by enhancing the doglikeness of Sony’s Aibo. In: 2020 Systems and Information Engineering Design Symposium (SIEDS). IEEE; 2020. p. 1–6.

    Google Scholar 

  45. Ihamäki P, Heljakka K. Robot pets as “serious toys”-activating social and emotional experiences of elderly people. Inf Syst Front. 2021:1–15.

    Google Scholar 

  46. Mois G, Beer JM. Robotics to support aging in place. In: Living with robots. Elsevier; 2020. p. 49–74.

    Chapter  Google Scholar 

  47. Bajones M, Fischinger D, Weiss A, Puente PDL, Wolf D, Vincze M, Körtner T, Weninger M, Papoutsakis K, Michel D. Results of field trials with a mobile service robot for older adults in 16 private households. ACM Transactions on Human-Robot Interaction (THRI). 2019;9(2):1–27.

    Google Scholar 

  48. Forlizzi J. How robotic products become social products: an ethnographic study of cleaning in the home. In: 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE; 2007. p. 129–36.

    Google Scholar 

  49. Pu L, Moyle W, Jones C, Todorovic M. The effect of using PARO for people living with dementia and chronic pain: a pilot randomized controlled trial. J Am Med Dir Assoc. 2020;21(8):1079–85.

    Article  PubMed  Google Scholar 

  50. Tanioka T. Nursing and rehabilitative care of the elderly using humanoid robots. J Med Investig. 2019;66(1.2):19–23.

    Article  Google Scholar 

  51. Mishra N, Tulsulkar G, Li H, Thalmann NM, Er LH, Ping LM, Khoong CS. Does elderly enjoy playing bingo with a robot? A case study with the humanoid robot nadine. In: Computer graphics international conference. Springer; 2021. p. 491–503.

    Google Scholar 

  52. Schrum M, Park CH, Howard A. Humanoid therapy robot for encouraging exercise in dementia patients. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE; 2019. p. 564–5.

    Chapter  Google Scholar 

  53. Cooper S, Di Fava A, Vivas C, Marchionni L, Ferro FARI. The social assistive robot and companion. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE; 2020. p. 745–51.

    Chapter  Google Scholar 

  54. Weiss A, Hannibal G. What makes people accept or reject companion robots? A research agenda. In: Proceedings of the 11th Pervasive Technologies Related to Assistive Environments Conference; 2018. p. 397–404.

    Chapter  Google Scholar 

  55. Tuyen NTV, Jeong S, Chong NY. Emotional bodily expressions for culturally competent robots through long term human-robot interaction. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. p. 2008–13.

    Chapter  Google Scholar 

  56. Giakoumis D, Peleka G, Vasileiadis M, Kostavelis I, Tzovaras D. Service robot behaviour adaptation based on user mood, towards better personalized support of MCI patients at home. In: Smart assisted living. Springer; 2020. p. 209–26.

    Chapter  Google Scholar 

  57. Groechel T, Shi Z, Pakkar R, Matarić MJ. Using socially expressive mixed reality arms for enhancing low-expressivity robots. In: 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE; 2019. p. 1–8.

    Google Scholar 

  58. Draper JV, Kaber DB, Usher JM. Telepresence. Hum Factors. 1998;40(3):354–75.

    Article  CAS  PubMed  Google Scholar 

  59. Kerr D, Serrano JA, Ray P. The role of a disruptive digital technology for home-based healthcare of the elderly: telepresence robot. Digital Med. 2018;4(4):173.

    Article  Google Scholar 

  60. Double Robotics–Telepresence Robot. https://www.doublerobotics.com/.

  61. AMY Service Robots. www.amyrobotics.com.

  62. Escolano C, Murguialday AR, Matuz T, Birbaumer N, Minguez JA. Telepresence robotic system operated with a P300-based brain-computer interface: initial tests with ALS patients. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE; 2010. p. 4476–80.

    Chapter  Google Scholar 

  63. Hansen JP, Alapetite A, Thomsen M, Wang Z, Minakata K, Zhang G. Head and gaze control of a telepresence robot with an HMD. In: Proceedings of the 2018 ACM Symposium on eye tracking research & applications; 2018. p. 1–3.

    Google Scholar 

  64. Ng MK, Primatesta S, Giuliano L, Lupetti ML, Russo LO, Farulla GA, Indaco M, Rosa S, Germak C, Bona BA. Cloud robotics system for telepresence enabling mobility impaired people to enjoy the whole museum experience. In: 2015 10th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE; 2015. p. 1–6.

    Google Scholar 

  65. Aymerich-Franch L, Ferrer I. Socially assistive robots’ deployment in healthcare settings: a global perspective. arXiv preprint arXiv:211007404; 2021.

    Google Scholar 

  66. UVD Robots. Blue Ocean robotics. https://uvd.blue-ocean-robotics.com/robots.

  67. Diligent Robotics. “Moxi hospital robot”. https://www.diligentrobots.com/moxi.

  68. Beam Pro telepresence robot. Blue Ocean Robotics. https://gobe.blue-ocean-robotics.com/beam-to-gobe.

  69. Vespa PM, Miller C, Hu X, Nenov V, Buxey F, Martin NA. Intensive care unit robotic telepresence facilitates rapid physician response to unstable patients and decreased cost in neurointensive care. Surg Neurol. 2007;67(4):331–7.

    Article  PubMed  Google Scholar 

  70. Newman P, Dhaliwall S, Bains S, Polyakova O, McDonald K. Patient satisfaction with a pharmacist-led best possible medication discharge plan via tele-robot in a remote and rural community hospital. Can J Rural Med. 2021;26(4):151.

    Article  PubMed  Google Scholar 

  71. Hai NDX, Nam LHT, Thinh NT. Remote healthcare for the elderly, patients by tele-presence robot. In: 2019 International Conference on System Science and Engineering (ICSSE). IEEE; 2019. p. 506–10.

    Google Scholar 

  72. Stricker R, Müller S, Gross H-M. Non-contact video-based pulse rate measurement on a mobile service robot. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication. IEEE; 2014. p. 1056–62.

    Chapter  Google Scholar 

  73. InTouch Health. https://intouchhealth.com/telehealth-devices/intouch-vita/.

  74. Kasar KS, Karaman E. Life in lockdown: social isolation, loneliness and quality of life in the elderly during the COVİD-19 pandemic: a scoping review. Geriatric Nursing; 2021.

    Google Scholar 

  75. Cavallo F, Aquilano M, Bonaccorsi M, Limosani R, Manzi A, Carrozza MC, Dario P. On the design, development and experimentation of the ASTRO assistive robot integrated in smart environments. In: 2013 IEEE international conference on robotics and automation. IEEE; 2013. p. 4310–5.

    Chapter  Google Scholar 

  76. Vermeersch P, Sampsel DD, Kleman C. Acceptability and usability of a telepresence robot for geriatric primary care: a pilot. Geriatr Nurs. 2015;36(3):234–8.

    Article  PubMed  Google Scholar 

  77. Moyle W, Jones C, Cooke M, O’Dwyer S, Sung B, Drummond S. Connecting the person with dementia and family: a feasibility study of a telepresence robot. BMC Geriatr. 2014;14(1):1–11.

    Article  Google Scholar 

  78. Niemelä M, Melkas H. Robots as social and physical assistants in elderly care. In: Toivonen M, Saari E, editors. Human-centered digitalization and services. Singapore: Springer; 2019. p. 177–97. https://doi.org/10.1007/978-981-13-7725-9_10.

    Chapter  Google Scholar 

  79. Niemelä M, Van Aerschot L, Tammela A, Aaltonen I, Lammi H. Towards ethical guidelines of using telepresence robots in residential care. Int J Soc Robot. 2021;13(3):431–9.

    Article  Google Scholar 

  80. Korblet V. The acceptance of mobile telepresence robots by elderly people. University of Twente; 2019.

    Google Scholar 

  81. Koceski S, Koceska N. Evaluation of an assistive telepresence robot for elderly healthcare. J Med Syst. 2016;40(5):121.

    Article  PubMed  Google Scholar 

  82. Petrushin A, Tessadori J, Barresi G, Mattos LS. Effect of a click-like feedback on motor imagery in EEG-BCI and eye-tracking hybrid control for telepresence. In: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE; 2018. p. 628–33.

    Chapter  Google Scholar 

  83. Shiomi M, Kamei K, Kondo T, Miyashita T, Hagita N. Robotic service coordination for elderly people and caregivers with ubiquitous network robot platform. In: 2013 IEEE Workshop on Advanced Robotics and its Social Impacts. IEEE; 2013. p. 57–62.

    Chapter  Google Scholar 

  84. Abou Allaban A, Wang M, Padır T. A systematic review of robotics research in support of in-home care for older adults. Information. 2020;11(2):75.

    Article  Google Scholar 

  85. Bonaccorsi M, Fiorini L, Cavallo F, Saffiotti A, Dario P. A cloud robotics solution to improve social assistive robots for active and healthy aging. Int J Soc Robot. 2016;8(3):393–408.

    Article  Google Scholar 

  86. Mbunge E, Muchemwa B, Batani J. Sensors and healthcare 5.0: transformative shift in virtual care through emerging digital health technologies. Global Health J. 2021;5(4):169–77.

    Article  Google Scholar 

  87. Li J, Carayon P. Health care 4.0: a vision for smart and connected health care. IISE Trans Health Sys Engg. 2021;11(3):171–80.

    Google Scholar 

  88. Almarashdeh I, Alsmadi M, Hanafy T, Albahussain A, Altuwaijri N, Almaimoni H, Asiry F, Alowaid S, Alshabanah M, Alrajhi D. Real-time elderly healthcare monitoring expert system using wireless sensor network. Int J Appl Engg Res. 2018;13(10):7541–50.

    Google Scholar 

  89. Gambhir SS, Ge TJ, Vermesh O, Spitler R, Gold GE. Continuous health monitoring: an opportunity for precision health. Sci Transl Med. 2021;13(597):eabe5383.

    Article  PubMed  Google Scholar 

  90. Majumder S, Aghayi E, Noferesti M, Memarzadeh-Tehran H, Mondal T, Pang Z, Deen MJ. Smart homes for elderly healthcare—recent advances and research challenges. Sensors. 2017;17(11):2496.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Petrushin A, Freddolini M, Barresi G, Bustreo M, Laffranchi M, Del Bue A, De Michieli L. IoT-powered monitoring Systems for Geriatric Healthcare: overview. In: Scataglini S, Imbesi S, Marques G, editors. Internet of things for human-centered design: application to elderly healthcare. Springer; n.d.

    Google Scholar 

  92. Parmiggiani A, Fiorio L, Scalzo A, Sureshbabu AV, Randazzo M, Maggiali M, Pattacini U, Lehmann H, Tikhanoff V, Domenichelli D. The design and validation of the r1 personal humanoid. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE; 2017. p. 674–80.

    Chapter  Google Scholar 

  93. Gambhir SS, Ge TJ, Vermesh O, Spitler R. Toward achieving precision health. Sci Transl Med. 2018;10(430):eaao3612.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Organization WH. Active ageing: a policy framework. World Health Organization; 2002.

    Google Scholar 

  95. Marques G. Ambient assisted living and internet of things. Harnessing the internet of everything (IoE) for accelerated innovation opportunities; 2019. p. 100–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo De Michieli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Michieli, L., Petrushin, A., Bustreo, M., Del Bue, A., Barresi, G. (2023). Robots in Geriatric Care: A Future with No Return?. In: Pilotto, A., Maetzler, W. (eds) Gerontechnology. A Clinical Perspective. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-32246-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32246-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32245-7

  • Online ISBN: 978-3-031-32246-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics